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Abstract:  The launch of a public project requires support from “enough” members of 
a group. Members (players) are differently important for the project and have different 
cost/benefit relations. There are players who profit and players who suffer from the 
launch of the project. Examples are the Kyoto protocol, voting with different weights 
(shareholders, the UN with the veto power of the Security Council members), and 
international scientific or military expeditions. As coordination on one of the usually 
many pure strategy equilibria is difficult, mixed strategy equilibria are the focus of this 
investigation. If all players profit from the launch of the project then, despite the 
“unnecessary” costs, the requirement of full contributions is a Pareto-improvement to 
every original threshold. The contribution probabilities of some player types defined 
by their importance are characterized according to their cost/benefit relations. 
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1. Introduction 

In a Threshold Public Good game the players contribute to a public project which is 

launched if and only if a certain level of contributions is reached. Contrary to the 

normal linear Public Good game with dominant strategies of zero contributions, there 

are many equilibria with certain or probabilistic contributions. In a special class of 

Threshold games players have only the binary choice of contributing their complete 

endowment or not, i.e. they join an enterprise or not, they cast a positive vote or not, 

they help establish or prevent a new golf resort by selling their site or not. Often 

Provision Point Mechanisms or Assurance Contracts allow only binary choices and 

thus belong to this class of games. 

Models of voting or of Threshold public goods which have so far been investigated 

are mostly characterized by symmetry of weights of the players as well as symmetry 

of cost/benefit relations. In this paper I try to establish a framework for the analysis of 

Threshold games with a general definition of thresholds and asymmetric cost/benefit 

relations. Players are characterized according to their relative or absolute importance 

for meeting the threshold. Relations between contribution probabilities, importance of 

players, and cost/benefit relations are reported. As this is a first approach (and also 

under the impression of the large number of equilibria) relations cannot be completely 

characterized, however. In addition, a simple but important welfare implication is 

reported, namely the superiority of full contribution requirements even though they 

imply unnecessary costs if less than full contributions are needed for the launch of a 

project. 

The most simple and prominent game in the class of binary Threshold games is the 

Volunteer’s Dilemma (Diekmann, 1985, 1993) where only one player has to 

contribute his resources. Otsubo and Rapoport (2008) investigate a Volunteer’s 

Dilemma game with T stages, where all players can decide in every stage whether to 

volunteer or not. The game ends if one player volunteers or when T is reached 

without a volunteer. Bilodeau and Slivinski (1996) and Weesie (1993, 1994) 

investigate this problem with continuous time. The sequential game with an 

exogenous order of players has been investigated by Bolle (2011). In addition to 

these theoretical investigations there are several experimental studies investigating 

the Volunteers Dilemma (Diekmann, 1986; Franzen, 1995; Goeree et al., 2005a; 
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Bolle, 2011). The other extreme Threshold game is the generalized Stag Hunt game 

where all players have to contribute to reach the threshold. 

For general Threshold games there are mainly experimental studies, as far as they 

are not equivalent to voting models. Binary contributions are investigated by Dawes 

et al. (1986), Palfrey and Rosenthal (1991), Erev and Rapoport (1990),Chen et al. 

(1996), Croson and Marks (2000), Rose et al. (2002),  Goren et al. (2003), Goeree 

and Holt (2005b), and McEvoy (2009). There are a lot more experiments with non-

binary decisions. General results for Threshold games are that sequential 

contributions are more effective than simultaneous contributions and that refunds and 

rebates of insufficient and superfluous contributions improve the contribution 

probability.  

Bagnoli and Lipman (1989) show that Threshold games have an efficient result if 

players are refunded and if only pure strategies are regarded. Palfrey and Rosenthal 

(1984) investigate a Threshold game with identical players which is very close to a 

voting model. Offerman et al. (1998) and Goeree and Holt (2005) substitute mixed 

strategy equilibria by Quantal Response equilibria which describe Nash equilibria 

when the precision parameter becomes infinitely large. Otherwise there are mainly 

voting models offering theoretical results. 

The classic game theoretic voter model has been introduced by Downs (1957) and 

has been formalized and supplemented by Riker and Ordeshook (1968). They 

assume binary decisions (voting or not) and a voter’s utility to be ܷ ൌ ܤݍ െ ܥ ൅  with ܦ

q = probability that his vote is decisive, B= utility difference because of the decisive 

vote, C= costs of voting. D = citizen’s duty or psychological benefit from voting has 

been added and emphazised by Riker and Ordeshook (1968), mainly to explain the 

Paradox of Voting, i.e. a large percentage of people voting in a general election 

although q is tiny. For other attempts to explain the Voter Paradox see the survey by 

Geys (2006). 

Two types of voting models may be distinguished, one where relative votes count 

and one where an absolute quota (e.g. minimal number of signatures for a 

referendum) has to be met. These are different, however, only if decisions are not 
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binary1. Palfrey and Rosenthal (1983) show that, with binary decisions, the Voters’ 

Paradox need not apply but that also for large electorates there are equilibria with 

mixed as well as pure strategies where individual votes keep a high level of 

decisiveness. One crucial difficulty is the coordination of players playing mixed and 

pure strategies. 

Threshold public good games usually have a large number of pure strategy equilibria. 

The selection of one of these (i.e. coordination for the players) is difficult, however, 

because neither the Pareto-criterion nor other criteria apply. The situation with mixed 

strategy equilibria (if they exist) is often easier as there are usually less of them, as 

they often have nice properties as symmetry if players are symmetric, and as they 

may be easier ranked.  On the other hand, equilibria where all players use strict 

mixed strategies need not exist and if they exist and are plausibly selected we know 

from many examples (e.g. Tsebelis,1990; Diekmann, 1993) that they seem to be 

plagued by “implausible” relations of mixture probabilities when comparing 

asymmetric players or evaluating the effect of parameter changes. Before we start 

with the theory section I want to show that such “implausible” results are almost 

inevitable.  

   Launch No launch Support costs   Non-support costs 

Utilities/costs      ܩ௜         0      ܿ௜      0 

Table 1: Utilities (costs) in a Threshold Public Goods Game with players who profit 

from the launch of the project, ܩ௜ ൐ ܿ௜ ൐ 0, and players who do not, ܩ௜ ൏ ܿ௜ ൏ 0. 

Regard the situation in Table 1 where utilities from a certain project are reported. This 

project has to be supported by a minimal set of players before it is launched. There 

may be other players with relations of costs and benefits different from those in Table 

1, but those players have dominant pure strategies (see next section). Let us assume 

that all these players have already been eliminated from the game and the necessary 

sets of supporters have been adjusted. We are left with players who profit from the 

launch of the project and have costs of supporting < profit (the group which is 

advantaged after the launch of the project) and with players who suffer from the 

                                                            
1 In most voter participation models, the binary decision is to vote or not to vote. In the latter case, the vote is 
endogenized. Then voting by supporters as well as non‐voting by opponents can be counted as supportive and 
vice versa. 
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launch of the project but have negative costs of supporting > (negative) profit. All 

players would like to free-ride on the contributions or non-contributions of others. 

It seems to be “plausible” that the players of the advantaged group will support the 

project with large probability if their cost/benefit relation ܿ௜/ܩ௜ is low while players 

from the disadvantaged group should “plausibly” use low support probabilities if ܿ௜/ܩ௜ 

is low. In mixed strategy equilibria, however, support probabilities depend only on the 

cost/benefit relations and not on the sign of costs and benefits. Therefore we 

inevitably have a “plausible” and an “implausible” dependency, independent of the 

result we find2. Therefore, mostly, we should not discuss results under the aspect of 

plausibility – unless we use this Janus-headed regularity as a reason to reject mixed 

strategy equilibria completely. Of a different quality are results which are plausible or 

implausible for both groups. 

In the next section the theory is presented. Sections 3 and 4 report two applications 

and Section 5 is the conclusion. All proofs of Propositions as well as definitions and 

preparatory lemmas connected with these proofs are relegated to the appendix. 

2. Theory 

2.1 General Theory and why it is better to require more 

In the Threshold game, there are ݊ ൒ 2 players ܰ ൌ ሼ1,… , nሽ	 who can 

simultaneously contribute or not a predetermined (not necessarily identical) amount 

of a resource to a public project. If there are “enough” contributions then the project is 

launched. Note that the set of players and the determination of their required 

contributions have happened in a pre-game phase. Also the preferences of the 

players may have been influenced during this time. We will comment on the pre-

game phase, but our analysis is restricted to the Threshold game. 

Definition 1: ࣢ designates the set of subsets of N whose contributions suffice to 

produce the public good. It has the following properties: ߶ ∉ ࣢, ܰ ∈ ࣢. If ܵ ⊂ ܵ′ ⊂ ܰ 

and ܵ ∈ ࣢ then also ܵ′ ∈ ࣢. We call ܵ ∈ ࣢ a minimal supporting set if no strict 

subset of ܵ  is contained in ࣢. We call ܵ ⊂ ܰ with ܰ െ ܵ ∉ ࣢ a minimal blocking 

                                                            
2 There is no contradiction from the fact that we can describe every situation in a positive or in a negative 
frame.  Reformulation in another frame leaves the incentives unchanged while the two groups in Table 1 have 
opposite incentives. 
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set if for no strict subset  ܵ′ ⊂ ܵ , ܰ െ ܵ′ ∉ ࣢. If ࣢ ൌ ሼܰሽ we say that full 

contributions are required.  

An example of ࣢ , in particular if players have identical resources,  are all subsets of 

N with k players. 

Assumption 1: Player i bears costs ܿ௜ if he contributes to the project and he enjoys 

benefits ܩ௜ if the project is launched. There is zero utility if the project is not launched 

and zero costs if a player does not contribute, i.e. as in Table 1. Benefits may be 

influenced also by altruistic or envious feelings towards the other players. Risk 

Neutrality and Complete Information about ࣢ and about costs and benefits are 

assumed. 

In cases of “real” public goods ܩ௜ ൐ ܿ௜ ൐ 0 applies. We will, however, take into 

account also other cases. If ܩ௜ ൐ 0 ൐ ܿ௜, it is a dominant strategy to invest; if ܿ௜ ൐ ௜ܩ ൐

0 then it is a dominant strategy not to invest. But there may also be losers with ܩ௜ ൏ 0 

if the project is realized. For these players 0 ൐ ܿ௜ ൐  ௜ describes the case without aܩ

dominant strategy. If 0 ൐ ௜ܩ ൐ ܿ௜, it is a dominant strategy to invest. If ܿ௜ ൐ 0 ൐  , it is	௜ܩ

a dominant strategy not to invest. But if 0 ൐ ܿ௜ ൐  ௜, then i wants to free-ride on theܩ

decisions of others not to invest. So there remain only two interesting cases and we 

can simplify the game by disregarding all players with dominant strategies but taking 

the consequences of their behavior into account in ࣢. 

Assumption 2: ܰ ൌ ܰା ൅ ܰି where for all ݅ ∈ ܰା we have ܩ௜ ൐ ܿ௜ ൐ 0 and for all 

݅ ∈ ܰି we have 0 ൐ ܿ௜ ൐  .ି݊ ௜. The number of players in the two sets are ݊ା andܩ

In cases ݊ି ൌ 0 there are as many pure strategy equilibria with the launch of the 

project as there are minimal supporting or sets. In such an equilibrium all ݅ ∈ ܵ ∈ ࣢, 

with ܵ ൌ minimal set, contribute and all other players do not. Usually ࣢ contains 

more than one minimal set. In the case of identical contributions, there are ൫௡௞൯ 

minimal sets and pure strategy equilibria. If ሼ݅ሽ ∉ ࣢ for all i, then zero contributions 

by all i is another equilibrium which is Pareto-dominated by the asymmetric pure 

strategy equilibria. Respective equilibria exist for ݊ା ൌ 0. Cases with ݊ି ൐ 0 and also  

݊ା ൐ 0 are different because pure strategy equilibria need not exist. In a pure 

strategy equilibrium, the project is launched with probability 1 or 0. If launched with 

probability 1 then all ݅ ∈ ܰି would also contribute because of ܿ௜ ൏ 0.	This possibly 
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allows some ݅ ∈ ܰା to withdraw their support until the set of supporters is minimal. 

But then there is an incentive for every decisive player	݅ ∈ ܰି not to support the 

project any longer. 

Proposition 1: (i) In a pure strategy equilibrium with the launch of the project, 

support is provided by players from a set ܵ with	ܰି ⊂ ܵ,	 ܵ ∈ ࣢ , ܵ െ ሼ݅ሽ ∉ ࣢ for  

݅ ∈ ܵ െ ܰି , and ܵ െ ሼ݅ሽ ∈ ࣢ for  ݅ ∈ ܰି. (ii) In a pure strategy equilibrium without the 

launch of the project support is provided by players from ܵ′ with ܵ′ ⊂ ܰି , ′ ∉ ࣢ , ሼ݅ሽ ∪

ܵ′ ∈ ࣢  for all ݅ ∈ ܰି െ ܵ′ , and ሼ݅ሽ ∪ ܵ′ ∉ ࣢  for ݅ ∈ ܰା. 

We now ask which properties equilibria in mixed strategies (or in mixed and pure 

strategies) have. We assume that players i=1,…,n contribute with probabilities ݌௜. 

Some of these probabilities may be 0 or 1. Sometimes we concentrate on the set of 

players with mixed strategies, i.e. ࣢ describes the necessary contributions if all pure 

strategy players (not only those with dominant strategies) have already been taken 

into account. 

Definition 2: Let ܵ be the (stochastic) set of contributing players and let us define ܳି௜  

as the probability that the project is launched also without player i’s contribution, i.e. if 

other players contribute with probability ݌௝,  then 

ܳି௜ ൌ ݅	:ሺሼܾܵ݋ݎ݌ ∉ ܵ, ܵ ∈ ࣢ሽሻ ൌ ∑ ∏ ࣢∋௝௝∈ௌௌ⊂ேିሼ௜ሽ,ௌ݌ ∏ ሺ1 െ ௝ሻ௝∈ேିௌିሼ௜ሽ݌    

Let us define ܳା௜ as the probability that the project is launched if i contributes, i.e. 

ܳା௜ ൌ ݅	:ሺሼܾܵ݋ݎ݌ ∉ ܵ, ሼ݅ሽ ∪ ܵ ∈ ࣢ሽሻ ൌ ∑ ∏ ࣢∋௝௝∈ௌௌ⊂ேିሼ௜ሽ,ௌ∪ሼ௜ሽ݌ ∏ ሺ1 െ ௝ሻ௝∈ேିௌିሼ௜ሽ݌ . 

Then ݍ௜ ൌ 	ܳା௜ െ ܳି௜ is the probability that i’s contribution is decisive.  

Player i’s expected utility is  

(1) ௜ܷ ൌ ௜ܩ ∗ ሾሺ1 െ ௜ሻ݌ ∗ ܳି௜ ൅	݌௜ ∗ ܳା௜ሿ െ  ௜݀௜݌

    ൌ ௜ܩ ∗ ܳି௜ ൅	݌௜ ∗ ሾܩ௜ ∗ ௜ݍ െ ݀௜ሿ  

with ݀௜ ൌ ܿ௜  if there are no refunds (if contributions are insufficient) and rebates (if 

contributions are superfluous), and  ݀௜ ൑ ܿ௜  if there are. ݀௜ is independent of  ݌௜. 
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                  ܿ௜  without refunds and rebates   

(2) ݀௜ሺܰሻ ൌ ݀௜ ൌ	      ܿ௜ 	∗ ܳା௜ with refunds but not rebates 

                            					ܿ௜ 	∗ ∑ ࣢∋ሺܵሻௌ∪ሼ௜ሽܤሺܵሻܾ݋ݎ݌  with refunds as well as rebates 

with ܤሺܵሻ ൌ 1 if S is a minimal supporting set and B(S)	൑1 otherwise. In “refunds but 

not rebates” we have ܤሺܵሻ ൌ 1 for all ܵ ∪ ሼ݅ሽ ∈ ࣢. Note that ݅ ∈ ܰା are happy about 

refunds and rebates, while, because of ܿ௜ ൏ 0, ݅ ∈ ܰି do not like them. From their 

point of view the equivalence to refunds and rebates are payments to those who 

have not contributed to the project. 

A mixed strategy equilibrium with 0 ൏ ௜݌ ൏ 1 requires that ௜ܷ is independent of ݌௜, i.e. 

(3) ߲ ௜ܷ
௜݌߲
ൗ ൌ ௜ܩ ∗ ௜ݍ െ ݀௜ ≡ 0. 

This requirement is standard in the literature on voting and threshold public goods, 

probably the first time derived by Downs (1957). The following simple welfare 

implications, however, seem to have been unnoticed. Inserting (3) into (1) provides 

us with the equilibrium utility which i expects if he plays a mixed strategy. 

(4) ௜ܷ ൌ ௜ܩ ∗ ܳି௜  

          ൌ ௜ܩ ∗ ܳା௜ 	െ ݀௜. 

If, in equilibrium, ܩ௜ ∗ ௜ݍ െ ݀௜ ൐ 0 then ݌௜ ൌ 1 and (1) implies ௜ܷ ൏ ௜ܩ ∗ ܳା௜ 	െ ݀௜; if ܩ௜ ∗

௜ݍ െ ݀௜ ൏ 0 then  ݌௜ ൌ 0	and ௜ܷ ൐ ௜ܩ ∗ ܳା௜ 	െ ݀௜. 

Proposition 2:  

(i) ݌௜ ൌ 0	ሺ݌௜ ൌ 1ሻ	݂݅		ݍ௜ ൏ ሺ൐ሻ݀௜/ܩ௜. 

(ii) Higher refunds decrease the equilibrium expectation ݍ௜ that one’s own 

contribution is critical. For ሼ݅ሽ ∈ ࣢ this implies higher ܳି௜ , i.e. i expects 

others “on average” to increase their contribution probabilities.  

If  ݊ି ൌ 0 then 

(iii) If full contributions are required there are three equilibria: E0 with ݌௜ ൌ 0	  

and ௜ܷ ൌ 0 for all I, E1 with ݌௜ ൌ 1 and ௜ܷ ൌ ௜ܩ െ ݀௜ for all i, and a mixed 

strategy equilibrium Em with ௜ܷ ൌ 0. 
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(iv) If (3) applies for i then the expected equilibrium utilities of i are not larger 

than the equilibrium utilities in E1. If, in addition, ሼ݅ሽ ∈ ࣢ then the expected 

equilibrium utilities of i are equal to the equilibrium utilities in E1. 

(iii) and (iv) can, of course, be equivalently formulated for ݊ା ൌ 0 . From (i) follows 

that ݌௜ ൌ 0 if ݍ௜ ൌ 0 and ݌௜ ൌ 1 if ݍ௜ ൌ 1. Proposition 2 (iv) does not prove the 

existence of mixed strategy equilibria but describes properties of equilibria if they 

exist. (For symmetric cases with complete information which is the standard case in 

the literature we will derive equilibria below and find that a symmetric mixed strategy 

equilibrium does not always exist.) (iv) means that, except in the Volunteer’s 

Dilemma (k=1 and the generalization ሼ݅ሽ ∈ ࣢), the requirement that all contribute 

even if full contribution is not necessary for the production of the public good, is a 

Pareto-improvement for all those with positive equilibrium probabilities. If there are 

players who contribute with probability zero then these are possibly worse off after a 

switch to the requirement of full contribution; all other players are better off. Note that 

the inferiority of intermediate thresholds is not self-understanding. Full contributions 

require unnecessarily high costs, but the losses according to attempted free riding 

are larger. In a symmetric game, (4) implies that at least in the case k=1 contribution 

probabilities increase with the amount of refunding and, more generally, with 

decreasing cost/benefit relations.  

While at least in cases ݊ି ൌ 0 and ݊ା ൌ 0, any minimal supporting set or any minimal 

blocking set can be the basis of pure strategy equilibria and while also Proposition 1 

characterizes pure strategy equilibria independent of costs and profits, in mixed 

strategy equilibria these incentives are central. When the launch of the project is 

uncertain then many players may be critical with a certain probability, i.e. 0 ൏ ௜ݍ ൏ 1. 

Also players with zero or one contribution probabilities face restrictions ݍ௜ ൏ ݀௜/ܩ௜ or 

௜ݍ ൐ ݀௜/ܩ௜ while in pure strategy equilibria the respective restrictions (with ݍ௜ ൌ 0 for 

outside players and ݍ௜ ൌ 1 for inside players) are always fulfilled. These restrictions 

prevent certain constellations of mixed/pure strategy equilibria but they need not 

prevent all of them, not even in symmetric situations. If there is a set of mixing 

players and a set of players who do not contribute, then this situation can be 

“stabilized” if an outside player faces a lower probability ݍ௜ than a inside player. 
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2.2 Player relations and contribution probabilities 

Definition 3: Player i is said to be not less important than j if, for every ܵ ⊂ ܰ െ

ሼ݅, ݆ሽ  and ܵ ∪ ሼ݆ሽ ∈ ࣢ also ܵ ∪ ሼ݅ሽ ∈ ࣢ applies. i and j are said to be in symmetric 

strategic positions if i is not less important than j and j is not less important than i.  

Note that two players can have opposite incentives, namely if one is member of ܰା 

and the other of ܰି, but nonetheless be in symmetric strategic positions and have 

the same cost/benefit relation ݎ௜ ൌ
ௗ೔
ீ೔
ൌ

ௗೕ
ீೕ
ൌ  .௝ݎ

Lemma 1: If all pairs of players are in symmetric strategic positions then the 

threshold can be formulated as “k of n have to contribute”. 

Let us now turn to the following questions: If i is not less important than j, will he 

contribute with larger or with smaller probability than j? Do players with larger 

cost/benefit relations contribute with larger or with smaller probability?  

In pure strategy equilibria both questions are largely irrelevant. If ݊ି ൌ 0 then every 

minimal supporting set is the basis of a pure strategy equilibrium. Importance may 

play a role only insofar as it is related to the minimal supporting sets. These equilibria 

are completely independent of cost/benefit relations. 

Let us now regard mixed strategy equilibria. We will see in the following that the two 

questions have different answers under different circumstances. Proposition 3 below 

will describe a “main case”, but we find different relations in other cases.  

Proposition 3: Assume that all players ݄ ∈ ܰ play mixed strategies with 0 ൏ ௛݌ ൏ 1 

and that ሼ݅, ݆ሽ  is contained in a minimal supporting set. 

(i) If players i and j are in symmetric strategic positions and if ݎ௜ ൐ ሺൌ,൏ሻݎ௝  

then ݌௜ ൏ ሺൌ,൐ሻ݌௝.  

(ii) If i is not less important than j and if ݎ௜ ൑ ௜݌ ௝  thenݎ ൒   .௝݌

Examples: ܰ ൌ ሼ1,2ሽ,	 ࣢ଵ ൌ ൛ሼ1,2ሽൟ, ࣢ଶ ൌ ൛ሼ1ሽ, ሼ2ሽ, ሼ1,2ሽൟ. In these two examples the 

two players are in symmetric strategic positions. In the case of ࣢ଵ we can apply 

Proposition 3 and get higher contribution probabilities for the player with the lower 

cost/benefit relation. (See also the proof of Proposition 2 (iii) with the derivation of the 

mixed strategy equilibrium in the full contribution case.) In the case of ࣢ଶ we cannot 
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apply Proposition 2 but we can compute the mixed strategy equilibrium directly and 

find ݌௜ ൌ 1 െ  ௝, i.e. we find higher contribution probabilities for the player with theݎ

higher cost/benefit relation. (See also the equilibrium probabilities derived in the 

asymmetric Volunteer’s Dilemma; Diekmann, 1993). The latter are “paradoxical” 

(Diekmann, 1993) in the case of ܰ ൌ ܰା; in the case of ܰ ൌ ܰି , however, they are 

“plausible”. The opposite characterization applies to ࣢ଵ. Note that both cases as well 

as  ሼ1ሽ ∈ ܰାand ሼ2ሽ ∈ ܰି have the same unique mixed strategy equilibrium.  

Proposition 3 highlights that the relationship between cost/benefit relations and 

contribution probabilities is, in “most” cases, contrary to the relationship in the 

Volunteer’s Dilemma. 

Let us now investigate two extreme cases, one where a certain player is extremely 

important and one where a player may be extremely unimportant. In the latter case, 

we will deal with another class of games where Proposition 3 is not applicable. 

Definition 4: A player i is irreplaceable if ݅ ∈ ܵ for every ܵ ∈ ࣢.  

Military intervention by NATO in a larger country is not possible without the United 

States who are then an irreplaceable player. A cartel often cannot be formed without 

the two largest firms who are then both irreplaceable players. The Security Council of 

the UN consists of irreplaceable players. In all cases the coalitions ܵ ∈ ࣢ can be 

larger.  

Proposition 4:  

(i) An irreplaceable player is not less important than any other player. 

(ii) If an irreplaceable player i is refunded then contribution with ݌௜ ൌ 1 is an 

optimal strategy. 

Assume that i and j are both mixed strategy players with equilibrium contribution 

probabilities 0 ൏ ,௜݌ ௝݌ ൏ 1. Then 

(iii) If i is irreplaceable then  ݌௜ ൑
௥ೕ
௥೔

 .  

(iv) If i and j are irreplaceable then  
௣ೕ
௣೔
ൌ ௥೔

௥ೕ
.  

(v) If i is irreplaceable then ௜ܷ ൌ 0. 
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From (v) follows that, in a mixed strategy equilibrium, an irreplaceable player does 

not profit from his strong position; on the contrary, he is not better off than after 

playing the pure strategy of non-contribution. If ࣢ ൌ ሼܰሽ, then all players are 

irreplaceable and (iv) and (v) apply for all players. We have discussed this situation 

already in Proposition 2 (iii) and selected the symmetric pure strategy equilibrium with 

contributions by all players.  

If the coalition of all irreplaceable players is an element of ࣢, then it is the only 

element of ࣢, and when ࣢ has only one element then there are no difficulties with 

coordinating on the pure strategy equilibrium where only these players contribute. 

Definition 5: A player j is unnecessary in the face of i if ሼ݅ሽ ∈ ܵ ∈ ࣢ implies ܵ െ

ሼ݆ሽ ∈ ࣢. 

In many teams a specialist in one area is necessary for success, say one book-

keeper in a non-profit organization which relies on voluntary work, but not two. One of 

them is unnecessary in the face of the other. If the coalition of all irreplaceable 

players is an element (necessarily the only) of ࣢ then all other players are 

unnecessary in the face of any irreplaceable player. 

Proposition 5: Assume that j is unnecessary in the face of i. Then 

(i) i is not less important than j, 

(ii)  ሼ݅, ݆ሽ are not contained in a minimal supporting set, 

(iii) If ݎ௜ ൏ ௝݌ ௝ thenݎ ൌ 0. 

Generally we can assume players to have certain resources which they can supply to 

the project. The threshold can be described by a (production) function of these 

resources which has to surpass a certain limit. A simple case which describes many 

applications is an additive function. 

Definition 3: If every player can be characterized by a number ݔ௜ and the threshold 

is defined by the requirement that the sum of the contributing players’ ݔ௜ reaches a 

certain limit ܮ then we call the threshold additive. 

With an additive threshold a player i is not less important than j if ݔ௜ ൒  ௝, he isݔ

irreplaceable if and only if ∑ ௝௝ஷ௜ݔ ൏   .ܮ



12 
 

 

 

2.3 A remark on dynamics 

Simultaneous contributions take place in secret voting and in other examples. But 

there are also examples where the assumption of simultaneity (almost standard in 

voting models) is less appropriate. Deviations from this procedure are “distributed 

contributions”, where all players can contribute during a certain time interval or in the 

course of a certain number of periods, or “sequential contributions” where, in an 

exogenous or an endogenous order, one player after another can contribute. In both 

cases all players are immediately informed about new contributions. For the 

Volunteer’s Dilemma distributed contributions have been theoretically investigated by 

Otsubo and Rapoport (2008) for a finite number of periods and by Weesie (1994) for 

continuous time. Sequential contributions in the Volunteer’s Dilemma are investigated 

by Bolle (2011). In the rest of this sub-section we want to concentrate on distributed 

contributions for which open voting and the Kyoto protocol are prominent examples. 

Let us assume that there are 2 periods in which every player can contribute.  

Contrary to Otsubo and Rapoport (1996) and Weesie (1994) we do not introduce 

exogenous incentives for early contributions but concentrate on the strategic effect of 

early contributions. 

Let us assume that the situation in period 2 is as described in Definition 1 and 

Assumption 1 above and that a certain mixed strategy equilibrium has been selected. 

If i expects no other player to contribute in period 1, he faces the following 

alternatives:  

(a) He does not contribute either. Then, in period 2, the mixed strategy is played and 

his expected utility is ௜ܷ
ି ൌ ௜ܩ ∗ ܳା௜ െ ݀௜. .  

(b) He contributes. Then his utility is ௜ܷ
ା ൌ ௜ܩ ∗ ܳሺܰ െ ሼ݅ሽሻ െ ݀௜ with ܳሺܰ െ ሼ݅ሽሻ 

describing the probability that, in an selected equilibrium with players ܰ െ ሼ݅ሽ, enough 

players ܵ ⊂ ܰ െ ሼ݅ሽ contribute to meet the threshold ܵ ∪ ሼ݅ሽ ∈ ࣢.  

In the case ሼ݅ሽ ∈ ࣢ we find  ܳା௜ ൌ ܳሺܰ െ ሼ݅ሽሻ ൌ 1 and therefore ௜ܷ
ି ൌ ௜ܷ

ା. In other 

cases the comparison of ܳା௜ and ܳሺܰ െ ሼ݅ሽሻ is difficult. We come back to this 
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problem in the case of symmetric equilibria. At least for irreplaceable players, early 

contributions are advantageous. 

Proposition 6. Let ܳା௜ and ܳሺܰ െ ሼ݅ሽሻ be defined as above and let us assume 

second round mixed strategy equilibria. 

(i) If ܳା௜ ൒ ܳሺܰ െ ሼ݅ሽሻ for all i then an equilibrium in the game with distributed 

contributions exists where all players contribute only in the second round. 

(ii) If ܳା௜ ൏ ܳሺܰ െ ሼ݅ሽሻ for at least one i then there is no equilibrium in the 

game with distributed contributions where all players contribute only in the 

second round. 

In all cases which are described by Proposition 6 (ii) there are also asymmetric 

second round equilibria where just those players who have an incentive for early 

contribution play a pure strategy with contribution. Early contributions, however, 

facilitate the coordination with respect to this equilibrium. 

3. Voting  

Let us first make clear that voting is a special case of the Threshold game only under 

the assumption that the set of voters is known in advance and that abstention is not 

allowed, not effective (for example because an absolute and not a relative quota has 

to be fulfilled) or prohibitively expensive. Non-participation as a substitute of 

abstention is allowed if we endogenize the subsequent vote. Most models of voter 

participation apply this technique in order to cope with a binary decision situation. We 

may, otherwise, regard a two-step game where first the voter set is determined and 

then the resulting Threshold game (without abstention) is analyzed. With binary 

decisions, there is no difference between relative or absolute quotas. Note that, in 

voting, refunding is usually not possible. 

Secret ballots as well as public votes may cause conflicts for some voters. Imagine 

that a parliament decides on a legislative proposal by a party, for example the 

abolition of the death penalty, entering a war, homosexual marriage, carbon taxes, 

etc. A member of the party which issued the proposal might be personally opposed to 

the issue but nonetheless he does not wish his party to be defeated. There are at 

least psychic costs ܿ௜ ൐ 0 for him for supporting the issue by his vote. In a public vote 

he has to fear consequences in his electoral district where people want him to vote 
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for or against the issue and he has to fear penalties from his party if he does not vote 

approvingly. Nonetheless approval may incur positive costs. A member of an 

opposing party (which wants the proposal to be rejected) may be in a similar 

situation. All members of a parliament may face a common conflict independent of 

their party affiliation when they vote on a legislative pay rise. 

In voting, an absolute threshold is additive, (mostly) with ݔ௜ ൌ 1 for all i and a 

necessary limit L=k. Exceptions are, for example, shareholder voting or the existence 

of a veto player. Note that k may take every number between 1 and n in (absolute) 

majority voting or voting with any other (absolute) quota because we have already 

eliminated all players with dominant pure strategies.  

With all ݔ௜ ൌ 1 all players are in equal strategic positions and therefore Proposition 3 

(i) applies. If all cost/benefit relations are 
ௗ೔
ீ೔
ൌ  then all mixed strategies have the ݎ

same ݌௜ ൌ  .We determine p by solving (3), i.e .݌

(5) ߲ ௜ܷ
௜݌߲
ൗ ൌ ൫݊െ1݇െ1൯p

kെ1ሺ1 െ pሻnെk െ r ൌ 0. 

In the case k=1 the left hand side of (5) is monotonically decreasing in p from 1 െ r ൐

0 to – r ൏ 0; in the case k=n it is monotonically increasing in	p; for other k it is െr for 

p ൌ 0 as well as for p ൌ 1 and larger and single peaked between 0 and 1. The 

maximum value is taken at p ൌ ሺk െ 1ሻ/ሺn െ 1ሻ and is not necessarily larger than 0. 

Therefore we have a unique solution of (5) if k=1 and k=n. If k=2,…,n-1, we have 2 or 

1 (boarder case) or no solution. 

In the case ݊ି ൌ 0, k=2,…,n-1, and when there are two solutions, the lower p is 

connected with a Pareto-inferior equilibrium because lower p imply lower ܳା௜	  and 

therefore lower utility for all players because of (4). If there is no solution of (5), there 

is no mixed strategy equilibrium with positive contribution probabilities. The only 

symmetric equilibrium consists of all players not contributing. At last, in the case k=n, 

we select the Pareto-superior and also symmetric pure strategy equilibrium where all 

players contribute. This equilibrium is discussed in Proposition 2 (iii). 

In the case ݊ା ൌ 0, according to the same arguments, we should concentrate on the 

lower equilibrium and, in the case of no solution of (19), the equilibrium where all 

players contribute. In the case k=n, no player contributes. 
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If ݊ା, ݊ି ൐ 0 then our criterion for the selection of equilibria according to Pareto-

superiority does not help us. Players from ܰା favor the opposite of what players from  

ܰି prefer. Proposition 1 shows that, in our example with identical cost/benefit 

relations, only one  pure strategy equilibrium can exist, namely all members of ܰି 

supporting the project and all members of ܰା not supporting. This is an equilibrium 

except for ݊ି ൌ ݇ (where single members of ܰି can prevent the launch of the 

project) and ݊ି ൌ ݇ െ 1	(where a single member of ܰା can launch the project by 

deviating). These pure strategy equilibria are complete free-riding equilibria because 

those who profit from the project do not contribute and those who do not profit 

contribute. There are also equilibria where some players play pure strategies, for 

which (3) does not apply, and some play mixed strategies for which (3) applies.  For 

these equilibria, again severe problems with coordination may exist.  

k     1    2   3  4   5         6  

p*   0.186  0.303   0   0   0.882         1 

ܳሺܰሻ    0.709   0.587   0   0   0.848           1 

௜ܷ     1.8   1.48   0   0   1.73          1.8 

 ܳା௜    1  0.886  0  0   0.975          1 

ܳሺܰ െ ሼ݅ሽሻ   1  0.724  0.639  0.643   0.852           1 

Table 2: Equilibria with ܩ௜ ൌ 2.8 and ܿ௜ ൌ 1. Contribution probabilities p*, launch 

probabilities ܳሺܰሻ, utilities ௜ܷ and ܳା௜ = prob(k-1 of n-1 contribute) for the problem 

with ݊ ൌ ݊ା ൌ 6, ݇ ൌ 1, 2, …6.  ܳሺܰ െ ሼ݅ሽሻ for the problem with n-1 players and k-1. 

Example: The example in Table 1 shows, first, what we already knew from 

Proposition 1, namely that the full contribution pure strategy equilibrium provides 

more utility than k=2,3,4,5 although more costs are incurred. In the cases k=3 and 

k=4 the symmetric equilibrium contribution probabilities are 0.  

In an open vote with a show of hands to signal approval (e.g. in committee sessions) 

there is a certain time span for decisions and the early decisions of others can be 

observed. In the cases k=3 and k=4 every voter is better off if he contributes first and 

thus changes the game to one where k=2 or k=3 approvals from 5 voters are 

necessary. If we virtually divide the time span into two periods then, in the cases k=3, 



16 
 

4 the mixed strategy consists of a probability to contribute (show of hands) in the first 

period and, depending on the number of resulting votes, another probability of 

contributing in the second period. Because ܳା௜ ൐ ܳሺܰ െ ሼ݅ሽሻ Proposition 5 tells us 

that, for k=2 and k=5, no voter will contribute in the first period (quickly) but all in the 

second (delayed). In the cases k=1 and k= 6 the utility of the early contributing player 

remains the same. Note that such a symmetric mixed strategy equilibrium over 

several rounds can nonetheless end with k=3 or 4 in the last round where, then, all 

players contribute with 0 probability.  

In particular in the case of secret votes with “medium” requirements of necessary 

approvals the proposing party should be alarmed. A way out of this dilemma may 

consist of making the majority narrower which is a disadvantage only at first glance. If 

convincing some of the mixed strategy players not to participate in the voting session 

is difficult because abstention is connected with particularly large costs the party may 

convince other members with a high party loyalty (who would vote approvingly with 

probability 1) not to participate. Thus, in our example, the required k may increase 

from 3 or 4 to 5 or 6 which implies a Pareto-improvement for all members of the 

proposing party. There are many statements by politicians and observers that narrow 

majorities foster the party discipline3, but I must admit that I do not know of a case 

where majorities have purposefully been narrowed. Party whips work mainly by 

influencing  ܩ௜  and ܿ௜ and aim at high participation rates of their delegates. We may 

doubt, however, that such a policy is always optimal. 

If we alternatively assume ݊ି ൌ ݊ା ൌ 3, then the probabilities in the cases k=1, 2, 5 

are still equilibrium probabilities, in the cases 3, 4, they are not. In the cases k=2,5,6 

the equilibrium selection according to Pareto-superiority does neither apply. Perhaps 

the pure strategy equilibrium described in Proposition 1 (all in ܰି contribute, all in ܰା 

do not) is now the most plausible equilibrium. But again these equilibria do not apply 

for k=3 and k=4. Note, however, that the players from ܰା have the same incentive for 

early contributions as in the case ݊ା ൌ 6.  

The situation k=3,4 in our example is not an exception. If the number of players 

increases then, except for k=1 and k=n,  ݍ௜ necessarily approaches 0 and therefore 

(3) cannot be fulfilled. Palfrey and Rosenthal (1984) describe this as the 
                                                            
3 “… the narrow majority can be a blessing since it offers its own incentives for Members to vote with the 
party” (Peters, 2004, p.233) 
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disappearance of mixed strategy equilibria for large groups. But as in the case of our 

example there may be incentives for early voting and there is a multitude of 

pure/mixed strategy equilibria. These equilibria are described by Palfrey and 

Rosenthal (1983).  

4. The idea of the Kyoto Protocol 

The Kyoto Protocol to the United Nations Framework Convention on Climate Change 

(UNFCCC) sets binding obligations on industrialized countries to reduce emissions of 

greenhouse gases. The Protocol was adopted by parties to the UNFCCC in 1997. 

Article 25 of the Protocol specifies that the Protocol enters into force "on the ninetieth 

day after the date on which not less than 55 Parties to the Convention, incorporating 

Parties … which accounted in total for at least 55% of the total carbon dioxide 

emissions for 1990 …, have deposited their instruments of ratification, acceptance, 

approval or accession." (The United Nations, 1998) The 55 nations limit was easily 

passed but the required 55% of the carbon dioxide emissions of 1990 turned out be 

difficult to reach as some large polluters, in particular the USA, did not ratify the 

protocol. Only after lengthy negotiations and heavy discounts, Russia joined the club 

so that, ultimately, the treaty entered into force in 2005. 

The idea of the Kyoto protocol is to change a normal public goods game with costs ܿ௜ 

and benefits ݃௜ ൏ ܿ௜, whose unique equilibrium is non-contribution, into a Threshold 

game with ܩ௜ ൌ ∑݃௜ ൐ ܿ௜ and contribution equilibria. By introducing a medium 

threshold of 55%, however, much or all of the improvement has been lost again. 

Probably the “fathers” of the Kyoto protocol wanted to launch worldwide climate 

policy successfully and probably they thought it would be easier to reach a medium 

threshold than a high one - but we know from Proposition 2 that the contrary is true. 

A second disadvantage of a medium threshold is that the probability ݍ௜ that i’s 

contribution is decisive is, at least for small players, rather low which makes non-

contribution a dominant strategy for these countries. 

How should a workable contract such as the Kyoto protocol look? First, negotiations 

according to the reduction obligation of a country should take into account that the 

contract will not be ratified if a majority in country i believes ܩ௜ ൏ ܿ௜. Only a small 

number of countries can be assumed to be altruistic and take also other countries’ 

advantages into account; to plead for such a point of view may be successful on a 



18 
 

climate conference but mostly not in a parliamentary decision in the home country. 

Second, the contract should be signed only by those who (almost) certainly fulfill 

௜ܩ ൐ ܿ௜. Third, with a highly demanding threshold, big players as China, USA, and EU 

become irreplaceable and, with refunding, will contribute with certainty. This requires 

that the first two points are met and that refunding is not deteriorated by a too long 

period in which countries have time to ratify the contract. In such a contract, 

refunding means “no obligation if the necessary quota is not reached”. If investments 

in CO2 have taken place, however, they are practically irreversible. Theorem 4(v) 

shows that, without refunding, irreplaceable players are in a difficult position.  

5. Conclusion 

A Threshold Public Good game has been investigated with binary decisions, a 

general Threshold defined on contributing player sets, players who profit and players 

who suffer from the launch of the project and have different cost/benefit relations. If 

all players profit from the launch of the project then it is better to establish an 

“unnecessarily” high threshold because the additional costs are overcompensated by 

the increasing probability of success. Players in equal strategic positions with equal 

cost/benefit relations are supportive with equal probabilities. If player i is not less 

important than j and has a smaller cost/benefit relation then he supports the project 

with a higher probability, provided the two players are members of a minimal 

supporting set. In the Volunteer’s Dilemma, however, where the minimal supporting 

sets are singletons players with a lower cost/benefit relation support the project with a 

lower probability. If player j is even unnecessary if i supports the project, then j’s 

support probability is zero. An irreplaceable player (who is contained in every minimal 

supporting set) is, in a mixed strategy equilibrium, not better off than with playing the 

pure strategy of zero contributions. With refunds, an irreplaceable player contributes 

with certainty. 

These are important messages for real world Threshold games although we know 

from experimental economics that people often do not behave according to 

theoretical results. But I think that the message for climate policy, if it wants to rely on 

Kyoto protocol-like treaties, is nonetheless important: Establish not so ambitious 

requirements from single countries in order to maintain low cost/benefit relations but 

require rather ambitious thresholds (close to 100%) for the contract to enter into 

force. 
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A certain shortcoming of the analysis is its reliance on Complete Information. But let 

us ask where, in the case of the Kyoto-protocol for example, the deviations are. 

There are a lot of “objective” scientific institutes and organizations which estimate 

costs and benefits for all countries and most of them can be trusted not to manipulate 

their estimates in favor of some countries. Of course, all these figures are highly 

uncertain and, insofar, there is incomplete information. But there is, perhaps with the 

exception of some countries like China, no substantial amount of private information. 

So we have mainly a collective decision under risk but not one where private 

information has strategic value. 

There are other examples of the provision of Threshold Public Goods where private 

information can be decisive, for example tight parliamentary votes where secret 

incentives depending on threats, bribes, and tit-for-tat arrangements may be decisive. 

It does not look easy, however, to merge mixed strategy equilibria and Incomplete 

Information. 

 

Appendix 

A1. Proposition 1: 

Without proof. 

A2. Proposition 2: 

Proof: (i) follows from (3). (ii) Higher refunds decrease ݀௜ and therefore, because of 

(3), the expected equilibrium ݍ௜. Because ܳା௜ ൌ 1	 for ሼ݅ሽ ∈ ࣢ the decrease of ݍ௜ must 

be due to an increase of ܳି௜. (iii)  ݌௜ ൌ 1 is the best reply to full contributions of others 

because ܩ௜ ൐ ܿ௜, and ݌௜ ൌ 0	is a best reply to others’ non-contributions (in the cases 

with WR the best replies are arbitrary). In every mixed strategy equilibrium we have 

௜ݍ ൌ ௜݌/ܲ ൌ ݀௜/ܩ௜ with  ܲ ൌ ∏ ௝௝∈ே݌ ൌ ൣ∏ ݀௜/ܩ௜௝∈ே ൧
ଵ/ሺ௡ିଵሻ

 , i.e. the mixed strategy 

equilibrium is unique. Because ܳା௜ ൌ implies ௜ܷ (4)  ݅ݍ ൌ 0. (iv) follows from ܳା௜ ൌ 1 if 

ሼ݅ሽ ∈ ࣢ and ܳା௜ ൑ 1 otherwise.  

A3. Lemma 1: 
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Proof: If ܵ ∈ ࣢  then every player can be substituted by a player from ܰ െ ܵ. I.e. if a 

set with k players is in ࣢ then every set with k players is in ࣢.  

A4. Preparatory definitions and Lemmas 

Let us now assume two players with contribution probabilities ݌௜ and  ݌௝ and let us 

define  

௜,௝ݍ (6) ൌ :ሺሼܾܵ݋ݎ݌ ݅, ݆ ∉ ܵ ∉ ࣢, ሼ݅, ݆ሽ ∪ ܵ ∈ ࣢ሽሻ 

which is the probability that the coalition ሼ݅, ݆ሽ , regarded as one player, is decisive. 

௜,ି௝ݍ (7) ൌ :ሺሼܾܵ݋ݎ݌ ݅, ݆ ∉ ܵ ∉ ࣢, ሼ݅ሽ ∪ ܵ ∈ ࣢ሽሻ	 

describes the probability that i is decisive when j does not contribute and, vice versa,  

௝,ି௜ݍ (8) ൌ :ሺሼܾܵ݋ݎ݌ ݅, ݆ ∉ ܵ ∉ ࣢, ሼ݆ሽ ∪ ܵ ∈ ࣢ሽሻ. 

In addition, we define 

௜,ା௝ݍ (9) ൌ :ሺሼܾܵ݋ݎ݌ ݅, ݆ ∉ ܵ, ሼ݆ሽ ∪ ܵ ∉ ࣢, ሼ݅, ݆ሽ ∪ ܵ ∈ ࣢ሽሻ ൌ ௜,௝ݍ െ   ௝,ି௜ݍ

which describes the probability that i is decisive when also j contributes. Respectively 

we get  

௝,ା௜ݍ (10) ൌ :ሺሼܾܵ݋ݎ݌ ݅, ݆ ∉ ܵ, ሼ݅ሽ ∪ ܵ ∉ ࣢, ሼ݅, ݆ሽ ∪ ܵ ∈ ࣢ሽሻ ൌ ௜,௝ݍ െ  . ௜,ି௝ݍ

After these preparatory definitions we get 

௜ݍ (11) ൌ ൫1 െ ௝൯݌ ∗ ௜,ି௝ݍ ൅ ௝݌ ∗   ௜,ା௝ݍ

௝ݍ (12) ൌ ሺ1 െ ௜ሻ݌ ∗ ௝,ି௜ݍ ൅ ௜݌ ∗  .௝,ା௜ݍ

Apparently the following relations hold 

௜,ି௝ݍ (13) ൅ ௝,ି௜ݍ ൑   ,௜,௝ݍ

௜,ି௝ݍ (14) ൌ ௝,ି௜ݍ ൌ ௝,ା௜ݍ and  ିݍ ൌ ௜,ା௝ݍ ൌ  ା if i and j are in symmetricݍ

strategic positions 

௜,ି௝ݍ  (15) ൒   .௝,ି௜  if i is not less important than jݍ

Lemma 2: Assume that i and j are both mixed strategy players with equilibrium 

contribution probabilities 0 ൏ ,௜݌ ௝݌ ൏ 1. If ݎ௜ ൐ ሺൌ,൐ሻݎ௝  then  
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௜,ି௝ݍ (16) െ ௝,ି௜ݍ ൏ ሺൌ,൐ሻሺݍ௜,௝ െ ௜,ି௝ݍ െ ௝,ି௜ሻݍ ∗ ሺ݌௜ െ    .௝ሻ݌	

Proof: After applying (9) and (11) and then (7) and (8) to ݍ௜ ൌ ௜ݎ ൏ ሺൌ,൐ሻݎ௝ ൌ  ௝ weݍ

get (16).  

Because of (15) and (13), Lemma 2 allows us to investigate the effect of cost/benefit 

relations on price relations. It is decisive, however, whether (13) applies with equality 

or not.  

Lemma 3: If all players ݄ ∈ ܰ play mixed strategies with 0 ൏ ௛݌ ൏ 1 and if ሼ݅, ݆ሽ  is 

contained in a minimal supporting set then ݍ௜,ି௝ ൅ ௝,ି௜ݍ ൏ ,௜,௝. If ሼ݅ݍ ݆ሽ is not contained 

in any minimal supporting set then ݍ௜,ି௝ ൅ ௝,ି௜ݍ ൌ  .௜,௝ݍ

Proof:  If all players play strict mixed strategies then all sets ܵ ⊂ ܰ of supporting 

players are assumed with positive probability. Let us define ݍା௜,ା௝ ൌ :ሺሼܾܵ݋ݎ݌ ݅, ݆ ∉

ܵ, ሼ݆ሽ ∪ ܵ ∉ ࣢, ሼ݅ሽ ∪ ܵ ∉ ࣢, ሼ݅, ݆ሽ ∪ ܵ ∈ ࣢ሽሻ which is positive if ሼ݅, ݆ሽ  is contained in a 

minimal supporting set and zero otherwise. As ݍ௜,௝ ൌ ௜,ି௝ݍ ൅ ௝,ି௜ݍ ൅  ା௜,ା௝, (12) has toݍ

apply without equality in the former case and with equality in the latter.  

A5. Proposition 3 

Proof: (i) If players i and j are in symmetric strategic positions then ݍ௜,ି௝ ൌ  ௝,ି௜. (16)ݍ

and Lemma 3 imply the statements. (ii) If i is not less important than j then ݍ௜,ି௝ ൒

௜݌ ௝,ି௜ and (16) and Lemma 3 implyݍ ൒   .௝݌

A6. Proposition 4 

Proof: (i) Compare definitions. (ii) follows from  ௜ܷ ൌ ௜݌ ∗ ܳା௜	ሺܩ௜ െ ܿ௜ሻ in the case of 

refunding of an irrepleaceable player, i.e. with ܳି௜ ൌ 0. (iii) If i is irreplaceable then 

௝,ି௜ݍ ൌ 0 for all j. (11)  and (12) imply 

௝ݎ  (17) ൌ ௜݌ ∗ ௝,ା௜ݍ ൒ ௜݌ ∗ ௜ݎ   ,௜,௝ݍ ൌ ൫1 െ ௝൯݌ ∗ ௜,ି௝ݍ ൅ ௝݌ ∗ ௜,ା௝ݍ ൑  .௜,௝ݍ

By dividing the two inequalities we get ݌௜ ൑
௥೔
௥ೕ

. (iv) If also j is irreplaceable then also 

௜,ି௝ݍ ൌ 0 and instead of (17) we get 

௝ݎ . (18) ൌ ௜݌ ∗ ௜ݎ  ,௜,௝ݍ ൌ ௝݌ ∗  .௜,௝ݍ

 (v) follows from ܳି௜ ൌ 0 and (4).  
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A7. Proposition 5 

Proof: (i) and (ii): Compare definitions. (iii) From (ii) and Lemma 3 follows ݍ௜,௝ ൌ

௜,ି௝ݍ ൅ ௝,ି௜. Let us assume 0ݍ ൏ ,௜݌ ௝݌ ൏ 1. Then we would get ݎ௜ ൌ ௝ݎ ௜,ି௝ andݍ ൌ  .௝,ି௜ݍ

Because i is not less important than j, ݍ௝,ି௜ ൑ ௜ݎ ௜,ି௝. This is a contradiction toݍ ൏  .௝ݎ

I.e. either I or j plays a pure strategy. Now assume ݌௜ ൏ ௝݌ ௝. Then݌ ൐ 0  and 

therefore ݍ௝ ൌ ௝,ି௜ݍ ൒ ௜݌ ௝, andݎ ൏ 1 and therefore ݍ௜ ൌ ௜,ି௝ݍ ൑ ௝,ି௜ݍ ௜. Because ofݎ ൑

௜ݎ ௜,ି௝ we getݍ ൒ ௜ݎ ௝ which is again a contradiction to the assumptionݎ ൏  ௝. Thereforeݎ

௜݌ ൒ ,௜݌௝ and, because not both of them can play mixed strategies, ሺ݌ ௝ሻ݌ ൌ

	ሺ1, ,݌ሺ	ݎ݋	ሻ݌ 0ሻ	 with 0 ൑ ݌ ൑ 1	have to apply. But if i contributes with certainty then j’s 

contribution is superfluous and he will contribute with zero probability.  

A8. Proposition 6 

Without Proof. 
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