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Abstract

In the presented paper we introduce an approach to assess particular economic effects

which may arise with bringing mobile technologies into the field of sales and distribution.

The research problem posed here comprises quite a special case where sales operations of a

company are carried by its sales representatives, which may count as a resource allocation

problem. We apply stochastic programming methodology to model the agents’ multistage

decision making in a distribution system with uncertain customer demands, and exemplify

a potential improvement in the company’s overall performance when mobile facilities are

utilized for making decisions. We provide finally an efficient computational algorithm that

delivers optimal decision making with and without mobile technologies, and computes the

expected overall performance in both cases, for any configuration of a distribution system.

Some computational results are presented.
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1 Introduction

Distribution of goods is realized in many industries by means of representatives who travel through
assigned territories, promote the products and services to customers and execute sales operations,
while the goods sold by the representatives are normally being delivered to the customers later on.
With that the efficiency of representatives’ operations determines to a great degree the efficiency
of a company in distributing its goods. Due to many practical reasons, like, for example, a
large number of customers and/or their geographical dispersion, the distributing company may
have to assign different territories or customer groups to several different representatives, which
then carry their work independently of each other. Then an efficient allocation of goods to the
representatives who then have to efficiently distribute these goods between the customers may
become an important issue under demand uncertainty, and we focus in this paper on potential
improvements which mobile technologies might deliver there being introduced into the company’s
decision making. Namely, enabling a centralised and real-time coordination of the representatives’
operations, the mobile facilities may enable a better distribution of goods between the company’s
customers.

For that we consider a company which delivers a particular product to a number of predetermined
customers, and model its distribution operations in two different environments: first, without
any presence of mobile facilities in the company’s decision making, and then, in the second case,
making use of them. To see what consequences will it have for attaining the company’s goals
becomes in fact our task.

1.1 Decision making with no mobile facilities

We can represent the operating environment of our company in the following way. The com-
pany delivers some good to its customers from a central warehouse on a regular basis — once a
week. This good can be material as well as immaterial, i.e. also service. We make the following
assumptions regarding the customer demand:

• the individual weekly demand of each customer is uncertain and represented by a random
variable;

• the random variables of individual demands are independent and identically distributed;

• their probability distribution is known to us (and to the company);

• at the beginning of each week there is a constant stock s reserved by the company in advance
to serve the customers during the week;

• the customer demand becomes realized first after the allocation of the weekly stock is done;

The delivery operations of the company have one very important issue: before a weekly physical
delivery goes on tour, the demands must become known to the company. We assume further that
each individual demand can be learnt only on the spot by visiting the customer, and that this job
is carried out by the company’ sales representatives. The company assigns different geographical
regions to different representatives.

3



 

 

 

 

 

µ⋅n  

 

1 
2 

3 
. . . 

. . . 

n 

µ⋅⋅= ns 4  

Figure 1: The company serves 4 districts with n customers in each.

We make the following assumptions concerning the work of the sales agents:

• each agent makes a round trip through his district at the beginning of the week and visits
the assigned customers one by one;

• a customer’s demand becomes known to the agent first by his arrival to the customer;

• having learnt this customer’s actual demand, the agent makes a decision on the quantity to
be delivered to this customer, and secures it by an appropriate contract with him;

• after that he drives to the next customer on the tour, and so on.

The following issue becomes important: even though the customer demands are not known in
advance, still each agent should know right before the trip, what quantity of the good he has at
his disposal. To secure this the company has to divide the total stock ”virtually” between the
agents, what it does according to some predefined rule, like, for example: the agents receive their
quotas according to the expected total demands in their districts.

Since not every customer demand can be met by an agent fully, then we have to raise the following
question: What should be a general rule for an agent while allocating the good for a given customer
on the tour? Let us now formulate the assumptions regarding this decision making:

• the company has the objective: each customer’s demand should be satisfied as fully as
possible;

• while allocating the good for the given customer, an agent counts on the following issues:

1. his available (not yet allocated) virtual stock,

2. this customer’s demand, and

3. the total expected demand of his customers who hasn’t been served yet;

• finally, the allocated (and secured) quantities are not subject to any later change.
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So we may represent the company’s objective in the following way: having in total N customers
to serve, whose individual demands in a given week occur to be ξ1, . . . , ξN , and having met their
demands in amounts x1, . . . , xN , we express the quality of this week’s entire decision x as

G(x|ξ) =

[

x1

ξ1

+ . . . +
xN

ξN

]

·
1

N
, (1)

where any ξi = 0 implies xi = 0 and the corresponding fraction equals 1 by definition.

Let us make the following notes here:

• we have expressed by (1) the overall customer satisfaction in the given week, which we will
also call this week’s overall performance;

• the objective of the company’s weekly decision making becomes the maximization of this
overall performance.

The chosen measure of the overall customer satisfaction corresponds to the view in which the
logistical customer service is defined as ”the state in which customer needs, wants and expecta-
tions, through the transaction cycle, are met or exceeded, resulting in repurchase and continuing
loyalty.” [39, p. 390]. As a company tries to reach an optimal balancing between inventory costs
and the customer service level, the chosen performance measure expresses the resulting degree
of the product availability for a given time period with respect to each single customer, over all
customers.

We would like to omit the constant factor 1/N in the company’s objective since this is only a
scaling factor. Since there is no interaction between the sales representatives assumed, the highest
possible overall service level may be reached only through each agent’s maximum performance.
We will assume that all agents follow the same decision rules and so are equally good in decision
making.

Referring to Figure 1 as an example and considering the 1st district with n customers, we see that
the corresponding agent has to efficiently distribute his virtual stock s1 = n · µ with the objective
of maximizing his individual performance:

x1

ξ1

+ . . . +
xn

ξn

−→ max

We would like to make the following remarks:

• visiting the customers one by one, the agent performs a multi-stage decision making;

• the decisions on later stages are dependent on the earlier ones, since all stages share the
same virtual stock of this agent;

• this implies that in some circumstances a relatively large demand of a particular customer
should not be satisfied fully in order to provide an acceptable servicing of the customers in
the next stages;

• from the other side, restricting the service for this customer too much deals with a risk that
the future stages occur to have nevertheless a lower demand, and the virtual stock will be
then not exhausted fully, what lowers the overall service level too;
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• so an excessive as well a moderate policy on each decision stage can both be inefficient, and
we raise the following general question:

Q1: How must the agent’s optimal decision making look? Or, in other words, what should be his
optimal strategy?

Let us now proceed to the presentation of the alternative environment which involves the use of
mobile facilities intended to improve the overall quality of decision making.

1.2 Decision Making with Mobile Technologies

From now we let all representatives make use of mobile computer devices which are able to establish
a connection with a company’s stationary server at any time and from any customer location
and upload the information on each allocated quantity to the server. If each representative will
follow this policy then this will provide the company with the real-time data on how the stock is
being allocated to the customers. This implies that the company will always have an up-to-date
information on (a) how many customers are still awaiting an allocation, and (b) what fraction of
the total stock has not been allocated by now.

Now let the mobile devices of the representatives be able not only to upload the data but also
to retrieve this global up-to-date information to their mobile devices any time they need. With
such capability the company doesn’t need to divide the total stock between the representatives
anymore, since they become able now to make allocations from the common stock.

Let us summarize the above in form of a new mobile policy for the representatives: upon arriving
to a customer and learning his demand each representative retrieves from the central computer
the information on the currently available stock and the number of the customers pending in the
system, and tries to make such an allocation to the current customer that maximizes the overall
system’s performance. After making a decision he uploads it immediately on the central computer.

May these changes help to improve the overall decision making of the representatives? One can
expect that they might, namely due to the following considerations:

• in the non-mobile environment any non-exhausted quota of one representative could not be
shared by another one whose quota occurred to be not sufficient this week;

• in the mobile environment the representatives share the same (common) stock, what might
lead to better allocations;

• they work in fact cooperatively in this mobile environment.

First of all, let us raise the following question:

Q2: How should the cooperative optimal decision making look?

And we come finally to the question
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Q3: Which operating mode — with or without mobile facilities — is expected to deliver a better
overall customer satisfaction? How such advantage, if any, does express?

We will answer these question through statement of mathematical models for both environments
and analysing their optimal solutions.

1.3 Backlogging

The assumptions we made by now for both mobile and non-mobile decision making miss the
following important point: what happens with uncovered customer demands? Do they get lost
or backlogged to be covered at a later time? We suppose that letting them get lost would be
rather an unrealistic assumption: in case when a representative has a particularly low stock at
final stages of his trip, he has then almost nothing to offer to the final customers, but will still
”curiously” figure out their demands.

And we extend our assumptions with the following one: if a representative doesn’t meet any cus-
tomer demand fully, then the missing merchandise must be delivered to this customer next week.
Thus the company will order/produce for the next week additionally a certain (deterministically
known) amount which will cover this week’s total backlog.

Note that we make our model with this assumption to some extent closer to the concept of
”available-to-promise” (see section 2.4). Namely, in case when a particular customer demand
cannot be met fully according to the optimal allocation policy, it means that we are not able to
promise to deliver the whole amount to the customer this week, but we can rather schedule the
delivery of the required quantity in two portions: the 1st – this week, and the 2nd – next week.
Also, if any customer demand occurs to be so extraordinary large that the company will not be
able to supply the backlogged demand either in the coming week fully, then it can be scheduled
to be delivered by parts week after week.

Lastly, we assume that the backlog doesn’t incur any extra costs.

According to the declared above company’s objective (1), the company is striving to provide each
customer with a maximal possible allocation this week, what, in turn, means to minimize each
customer’s backlog. Thus, our assumption on backlogging doesn’t require any modification of the
company’s objective, while is giving more practical sense to our model. The way the optimal
decisions have to be made stays with that unchanged.

Thus, keeping in mind that backlogging takes place — and fitting our model to the ATP philosophy,
we can nevertheless omit its explicit consideration in our forthcoming modeling.

Before we proceed to modeling, let us make a brief overview of the known research in related areas
and also review the practical issues that might concern our problem field.
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2 Related Research and Practical Issues

2.1 Vehicle Routing and Inventory-Routing Problems: Route Sales

Distribution of goods with deterministic demands was extensively studied by the research com-
munity over the last decades within the framework of Vehicle Routing Problems (VRPs). This
classical extension of the Traveling Salesman Problem can be defined in its simplest form as fol-
lows: given a number of geographically dispersed customers with known demands, one has to
construct a set of routes for identical vehicles of a limited capacity such that each customer is
visited exactly once, all demands are fully met, vehicle capacities become never exceeded and the
total travel distance minimized. For reviews of this research see for example [22, 26, 7, 4].

While the demand variability is not captured by the classical VRP, many real-life problems have to
deal with it. The stochastic extensions of the VRP are studied in the research literature since the
late 70’s. Among them, the most extensively studied stochastic vehicle routing problem (SVRP)
assumes the actual customer demands not to be known in advance but known to follow given
probability distributions. With this information, one constructs the routes with the objective
of minimizing the expected total distance travelled, taking into consideration potential route
failures and route breaks for replenishing a vehicle at the depot. As a vehicle follows then its
route and gradually reveals the actual demands (sooner or later - depending on assumptions),
reoptimizations of the current route become possible (up to which extent - depending on the
policy chosen), what the objective function has to account for, too. For more detailed presentations
see [14, 6, 7, 19, 46, 44, 27].

As an example of real distribution problems where instances of the SVRP find their application, the
following ones may be considered: delivery of petroleum products, loading the banks’ automatic
teller machines, or waste collection [37, p. 146], [46].

Yet another direction for extending the VRP has arisen due to the following considerations. An
optimization of the transportation costs alone was not sufficient in many centralized distribution
applications where retail outlets play the role of customers’ locations and so the incurred inventory
costs become an integral part of the system-wide costs. This need for an integrated coordination of
inventory control and transportation planning in a single-warehouse-multiple-retailer system gave
birth to a number of inventory-routing problems which extend the VRP in the following way: given
a single depot with identical vehicles of a limited capacity and a number of retail outlets which
face external demands at constant rates, one has to schedule optimal deliveries for replenishing
the outlets and determine the corresponding vehicle routes so that the overall costs including
those incurred by the retail inventory are minimized [2, 3, 9]. Inventory-routing problems with
stochastic external demands were approached one of the first by Federgruen and Zipkin in [17] and
Federgruen et al. in [16] where the objective functions incorporate the expectations of inventory
and shortage costs. The recent papers by Kleywegt et al. [25] and Adelman [1] review the research
done in this area.

We can make the following notes here. One may see that one of the basic assumptions made in the
SVRP (as well as in the inventory-routing problems) is the full delivery : the customer’s demand
must be met fully if this can be done by the vehicle. This assumption excludes the cases when a
limited resource has to be divided between the customers and so not every demand can be met
fully.
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Another important assumption of the SVRP and the inventory-routing problems is that they
consider such distribution systems in which Route Sales occur to be the operating mode, what
assumes that the vehicle carries the goods on board and distributes (sells) them as it follows
its individual route. Thereby any re-allocation of the limited good between different vehicles
(territories) becomes hard or costly to implement, even though it might appear worth doing as
the customer demands become gradually revealed as the vehicles follow the routes.

2.2 Pre-Sell concept

In fact, we try to investigate in this paper such distribution operations which are free of the
assumptions mentioned above and correspond to a greater extent to the Pre-Sell concept, in
which the sales and the delivery operations are fully separated [2], what assumes that the sales
are first arranged by the sales representatives with the customers before the deliveries will be
executed by the company. Anily and Federgruen formulate this principle in the context of the
inventory-routing applications as follows: ”each salesman is required to visit the outlets in his
region periodically in a given sequence determining replenishment quantities” [2]. We go a bit
further in our assumptions and require that the quantities which a representative determines in
such sequential manner cannot be changed or reconsidered later. So we are interested in the
optimal determination of these quantities under presence of some remaining and not yet known
demands having a limited total supply at our disposal.

We would like to mention here a note made by Yang et al. about a possible relaxation of the
full delivery assumption in the SVRP context [46, p. 100]. Treating the vehicle’s stock on board
as a limited resource and wanting to serve the demand of remaining customers too, one might
decide not to meet the demand of the current customer fully. The authors do not give this policy
a further attention though.

Sequential decision making under uncertainty is discussed in the research literature dedicated to
various applied areas, like, for example, target shooting [30], oil exploration [28], agriculture [29],
portfolio management [38].

Our research can be reasoned by the current development of mobile technologies which, being
introduced into the company’s business processes, may support its employees in their decision
making. The Pre-Sell distribution, reported as decreasing in the past decades [2, p. 93] due to a
variety of advantages of Route Sales systems, is becoming now more popular due to availability
of wireless devices which ”allow field reps and management to do a better job of meeting de-
mand” [21]. New software applications allowing the presell representatives to have an efficient
access to vast amounts of corporate data via wireless handhelds are being at the time developed
and applied. This all has ”increased preselling activity and the resulting division between presales
and delivery activities” [21]. The same source reports on estimations of about 25 to 30 percent of
routes in the soft drink industry moving to presell. A much better and a real-time data exchange
between a field representative and the company has a potential of improving the overall company’s
operating, since it may receive the customer orders from the representatives in real time (and make
a better planning) and also provide all relevant information to the representative necessary for his
actions.

Communication over phone and, even later, over mobile phones was not able to provide the
same efficiency of data exchange between the company and a representative as which handheld
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computers now provide, since they give a faster and a ”sharper” access to a broader corporate
information [36].

Many other industries employ presell representatives as well, which, according to several occu-
pational guides, typically have to travel through assigned territories, market, promote and sell
products to manufacturers and wholesale and retail buyers, check existing stock, analyze, discuss
and determine client’s needs, inform about prices and availability, negotiate the sale, estimate
delivery dates [15, 45].

A more recent online source [31] reports on a business project which two leading technology
companies initiated to offer solutions for mobile workforce management in the utility industry,
by means of which ”. . . joint clients can optimize all types of field work, using the same asset
management system that they use in their generation plants and facilities . . . optimally schedule
and wirelessly dispatch work to field crews, who use the solution to manage and record their work,
and provide real-time status updates to and from the field.”

We would like to treat this as a justification for considering the distribution operations under the
assumptions discussed above and to investigate potential improvements which mobile technologies
could provide in this area. As one may already see, planning of delivery operations does not come
into our view, rather an optimal allocation of the goods to the customers is our objective.

2.3 Dynamic Resource Allocation

Thus, the company’s decision making in both mobile and non-mobile settings can be treated as
resource allocation in a dynamic environment, where ”dynamic” means that the entire allocation
plan of the company’s stock develops concurrently with arrival of each new demand realization,
revealed by a particular representative (see also [37, p. 151] terming dynamic environment in the
vehicle routing context).

Dynamic resource allocation has been extensively studied by the CASTLE Laboratory at the De-
partment of Operations Research and Financial Engineering of Princeton University, USA. The
results have been reported among others in [32, 18, 13, 12, 10, 20]. The authors develop a frame-
work for dealing with dynamic resource management problems, based on stochastic programming
models and techniques. Their research was motivated initially by applications in freight trans-
portation, such as truckload trucking and railroad car management, that can be described in
short as managing reusable resources like containers, locomotives, drivers or crews, in a logistics
network with customer orders arriving stochastically over time and requesting resources at certain
locations to be occupied for certain activities. The problem of managing these resources efficiently
is being complicated greatly by a dynamic nature of information input (e.g., customer orders) and
a multitude of stochastic parameters including not only external ones like order quantities and
locations, but also internal, like travel times, fuel consumption, costs, and others. The fact that
the travel times and associated costs cannot be known with certainty for a movement decision to
be made, and even that they may not become known until the movement is completed, makes
our knowledge on availability of resources at any future time and at any location uncertain too.
Since particular resources (like locomotives and crews) have to be coupled together to execute a
decision, one have to be able to handle such resource ”bundling” and ”layering” properly. The
framework is presented in the context of a railroad car distribution problem in the book chapter
by Powell and Topaloglu [35].

10



The application of the above models and techniques is not restricted only to reusable resources
in freight transportation, but can also be applied to distribution problems where a product is
being distributed from plants to warehouses in anticipation of uncertain customer demand. Such
application is demonstrated, for example, by Cheung and Powell in [12] and Godfrey and Powell
in [20].

The research carried by the CASTLE Laboratory is presented well on its online resource [33].

The framework developed and successfully applied by the above authors to complex practical
problems has rich modeling and solution capabilities. The problem we are studying here has much
lower dimensionality and complexity, and can be fitted into the discussed framework. Though,
we attempt to approach our problem ”from scratch” because this should let us take a first closer
look on it. Another argument for doing that are stochastic coefficients in our objective function,
what was typically not assumed in the modeling of railroad car management as well as product
distribution presented in [13, 12, 20]. Still, we believe that the methods developed in the context
of the above resource management problems can be used to extend and investigate our setting,
what we are going to approach in our further research.

2.4 Available to promise

The model that we are studying might be also coupled with the concept of available-to-promise
(ATP), which can be defined as a functionality of responding to customer order requests by
determination of supply/delivery quantities and their due dates. Since the availability of the
product depends on many factors like production resources and operations scheduling, the ATP
function links the customer orders with the enterprise resources, with the objective of improving
responsiveness in order promising as well as reliability in order fulfillment [11, 5]. ”The advanced
ATP function is a decision-making mechanism that handles uncertainty and changes from external
suppliers and customers, as well as from internal production processes. Its purpose is to improve
profitability and customer service as well as to mitigate the discrepancy between forecast-driven
push activities and order-driven pull activities across a supply chain system” [11]. The latter
means that the ATP function resides typically on that point in the supply chain up to which
the customer orders penetrate. Up from this point all downstream activities are order-driven, as
opposed to the forecast-driven activities up to this point. So ”the ATP system executes at the
interface of the push-driven flow and pull-based flow systems” [5].

Keeping this in mind, let us take a look at our decision making from the following point of view.
Let us still assume that the company distributes a final product to its customers. Let a new volume
s1 of the product be released and become available at the beginning of the coming week, according
to the production schedule. Then the mission of the sales representatives would be to respond to
the customer demand so that the available product (a limited resource) becomes allocated to the
customers most efficiently, so that the overall customer satisfaction becomes as high as possible.
If we assume that in the next week there will be the total product volume s2 available, then we
are interested again in a most efficient distribution of this amount by the representatives between
the customers.

In other words, all together the representatives implement an ATP mechanism: they allocate,
i.e. promise, some product quantities to the customers upon learning their individual demands,
which become known over time. May the mobile technologies help the representatives to improve
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Figure 2: Distribution of the product in consecutive time periods

their performance, i.e. to improve the overall customer satisfaction, or, in other words, to improve
the ATP mechanism? We are going to prove that yes, the representatives perform in this sense
better when they utilize mobile technologies determining product quantities (note that we made
initially in the section 1.1 the assumption that the company has weekly the same stock s just
for evaluating its average performance given a stock level s). Also note that a representative
may not meet an extraordinary large individual demand fully, even though the currently available
stock would cover this demand: an ATP policy may prescribe to meet this demand only partially,
because a particular stock must be kept for servicing the other customers. So each time an
available-to-promise quantity is being determined according to some policy and allocated to the
customer. Demands that cannot be covered fully in this week, will be scheduled to be met in the
next week(s).

Now let us generalize the described operating mode in the following way. Let the customer orders
penetrate the supply chain up to some particular point upstream. In other words, we consider
now an assemble-to-order enterprise. There is no any finished product made to stock. Can we still
utilize our model somehow? Yes, the model still may have sense: for example, in the following
setting. Assume that the production of the enterprise is being assembled and sold according to
contracts signed with the customers by the company’s managers. These managers have to travel
to the important customers and negotiate the contracts. For the production volumes secured by
the contracts there will be needed particular enterprise resources, which are limited. Hence, these
resources have to be efficiently allocated. Now not the sales representatives, but the managers
are allocating limited resources to the customer orders. And these allocations seem to be more
sophisticated to manage, since they involve planning of how the resources will be assigned for the
assembling activities. Since all managers have to be aware of the available resources, and each
has to be able to make a decision that would contribute to the company’s overall performance,
the mobile technologies may play here a more important role, either, than in the case of sales
representatives, since any voice communication over phone makes less sense.

Note that everything what was said above for the sales representatives, applies to the managers,
too, but at a higher degree of complexity. So our problem setting with sales representatives may
find in fact a broader application. This decision making might be integrated also into a more
complex environment like an ATP system managing a multi-commodity resource pool.

The rest of the paper is organised as follows. We proceed to the mathematical modeling of our
approach in the next section. Section 4 demonstrates how does the model perform under a par-
ticularly simple demand distribution, and demonstrates some decision and evaluation techniques.
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Section 5 generalizes them for any arbitrary dimensionality of a distribution system and any finite
discrete distribution of customer demands, as well as presents some computational results.

3 Modeling

3.1 Servicing a single customer

Let us consider at first a system where a single representative provides service to a single customer.
Let such configuration of a distribution system be called C|1|. We sketched it in Figure 3.

s

ξ1

1

Figure 3: Configuration C|1|

In C|1|, the company reserves at the beginning of the week s units
of the good for meeting uncertain customer demand. The only
representative, having received the whole stock s at his disposal,
makes his way to the customer, learns his demand ξ1, makes an
allocation x1 with the objective of maximizing this weeks’s overall
performance, and then makes his way back home. The single repre-
sentative doesn’t utilize any mobile facilities in his decision making
(indeed, it wouldn’t make much sense since he is the only one who
makes allocations).

Hence, the representative faces the following decision problem while
making an allocation x1:

x1

ξ1

−→ max

x1 ≤ s

x1 ≤ ξ1

x1 ≥ 0

(2)

where ξ1 = 0 implies x1 = 0 and the fraction in the objective equals 1 by definition. Note that (2)
is a deterministic linear program since the decision is made upon learning the demand realization
ξ1.

Obviously, decision making in C|1| is particularly simple: the representative should allocate to
the customer as much of the good as possible, maximizing by that the customer satisfaction. This
resolves question Q1 in the given configuration.

Let us now discuss this distribution system in the context of the question Q3: what overall
performance should we expect to attain in C|1| in any given week? Indeed, in presence of uncertain
customer demand, we are interested in expected performance. The latter can also be understood
as the average system’s performance on the long run, given a weekly initial stock s. How can it
be expressed?

Obviously, one should consider the expectation of the optimal objective value in (2). As one may
see, the above problem incorporates random parameter ξ1 varying from week to week. Hence, the
optimal objective value in (2), being dependent on this random parameter, becomes a random
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variable, too. Let us rewrite (2) in the following form:

Z(ξ1, s) = max
x1

{

x1

ξ1

∣

∣

∣

∣

x1 ≤ s, x1 ≤ ξ1, x1 ≥ 0

}

(3)

where Z(ξ1, s) denotes the optimal objective value expressing the customer satisfaction in case of
initial stock s and demand realization ξ1. Hence, the expectation of the random variable Z(ξ1, s)
with respect to the probability distribution of ξ1 provides us with the expected performance in
configuration C|1| given the initial stock s, which we define respectively as

E|1|(s) = Eξ1 [Z(ξ1, s)]. (4)

Obviously, we cannot speak about applying mobile facilities for joint resource sharing in our
distribution system with the only representative. The next section introduces a system of a bit
higher complexity and illustrates our approach in modeling the effects of mobile technologies.

3.2 Servicing 2 customers

3.2.1 Non-mobile decision making

Let us consider now servicing of two customers in the following two different configurations:

C|1|1| : two representatives, each servicing just a single customer, with no mobile facilities, and

C|2| : a single representative, servicing the two customers in the sequence.

These two configurations are depicted in Figure 4. Note that in both cases there are no any mobile
facilities in use.

 

a    a 
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ξ1 
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Figure 4: Configurations C|1|1| and C|2|

In both cases the company reserves the same initial stock s at the beginning of the week. The
random customer demands ξ1 and ξ2 are assumed to be independent and identically distributed.
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Then, in C|1|1| the company allocates the same quota a = s/2 for meeting each customer’s
demand. The representatives will have to make such decisions x1 and x2 which maximize the
overall performance:

x1

ξ1

+
x2

ξ2

−→ max

x1 ≤ a
x1 ≤ ξ1

x1 ≥ 0
x2 ≤ a
x2 ≤ ξ2

x2 ≥ 0

(5)

where ξi = 0 implies xi = 0 and the corresponding fraction in the objective equals 1 by definition.
Note that (5) is a deterministic linear program since both decisions are made upon learning the
demand realizations ξ1 and ξ2.

Obviously, we can split (5) into two independent linear programs:

x1

ξ1

−→ max

x1 ≤ a

x1 ≤ ξ1

x1 ≥ 0

x2

ξ2

−→ max

x2 ≤ a

x2 ≤ ξ2

x2 ≥ 0

(6)

which the representatives solve independently of each other upon arriving to their customers and
learning their demands. Thus, the overall performance in C|1|1| sums up from the two individual
performances and becomes maximized if (and only if) each representative maximizes his individual
performance. We will refer further to the above two problems as to (6.1) and (6.2), respectively.

How should the allocation decisions be made in the configuration C|2|? In this case the same initial
stock s has to be distributed by a single representative between the two customers sequentially
and, again, in the most efficient way. ”Sequentially” means here that the allocations of the good
to the customers are being made one-by-one, so that the allocation to the 1st customer has to be
made before the 2nd customer’s demand becomes known. Then, arriving to the 1st customer, the
representative faces the following optimization problem:

x1

ξ1

+ Eξ2

[

max
x2

x2

ξ2

]

−→ max

x1 ≤ s

x1 ≤ ξ1

x1 ≥ 0

x2 ≤ s − x1

x2 ≤ ξ2

x2 ≥ 0

(7)
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Since only the demand of the 1st customer is known to the representative at the time, he has to
work on the overall performance in the sense of its expectation, which has to be maximized. Note
that his 1st stage allocation x1 leaves the space of as much as s − x1 units for the allocation to
be made on the 2nd stage. So the more we allocate to the 1st customer, the less we leave for
the 2nd one and so the lower the expectation of the 2nd customer’s satisfaction becomes, and
vice versa. Of course, the 2nd-stage decision is supposed to utilize the available stock s − x1 in a
most efficient way, that’s why the objective function in (7) incorporates the expected value of the
highest possible 2nd-stage performance.

Problem (7) occurs to be a so called two-stage stochastic linear program. We can rewrite it also
in the following form:

x1

ξ1

+ Q(x1) −→ max

x1 ≤ s

x1 ≤ ξ1

x1 ≥ 0

Q(x1) = E
[

Q(x1, ξ2)
]

Q(x1, ξ2) = max

{

x2

ξ2

∣

∣

∣

∣

x2 ≤ s − x1, x2 ≤ ξ2, x2 ≥ 0

}

(8)

As one may see, x1 is the only decision variable in this problem. Function Q(x1), called the
expected recourse function, expresses the expectation of the recourse function Q(x1, ξ2), which is
itself the optimal objective value of the following embedded recourse problem:

x2

ξ2

−→ max

x2 ≤ s − x1

x2 ≤ ξ2

x2 ≥ 0

(9)

Hence, a recourse program is the one ”in which some decisions or recourse actions can be taken
after uncertainty is disclosed” [8, p. 52]. Note that this is just a deterministic linear program and
is exactly of the same type as problem (2) faced by the single representative in configuration C|1|.
Its optimal objective value Q(x1, ξ2) represents in our case the 2nd customer’s satisfaction which
the representative would deliver facing the demand realization ξ2 and having s − x1 units of the
good at his disposal. Hence, Q(x1) is the expected satisfaction of the 2nd customer given that we
allocate x1 units to the 1st one, i.e. that we leave s − x1 units for meeting the 2nd customer’s
demand.

Note that in order to evaluate Q(x1, ξ2) for any given x1 we have to solve each time the embedded
linear program. In order to evaluate Q(x1) for any given x1 we have to compute the expectation
of the optimal objective value of this embedded linear program, with respect to the probability
distribution of ξ2. See the textbooks [23, p. 16], [24, pp. 9–11, 25–26], [8, p. 54], [43, pp. 11–12]
for more details on two-stage stochastic programs.
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After a decision x1 is fixed, the representative makes his way to the 2nd customer, learns his
demand ξ2 and makes an allocation x2 by solving the second stage problem (9) where x2 is the
only variable and all parameters are deterministically known. One may also see that this is the
same optimization problem as (6.2) where s − x1 is substituted for a.

Note that by solving the optimization problems (6) and (8),(9) in configurations C|1|1| and C|2|,
respectively, we resolve the question Q1 for them both!

Let us examine now these two configurations in the context of the question Q3: which of them
should we expect to deliver a better overall performance? Indeed, in presence of uncertain customer
demands, we are interested in expected overall performance attained in these two configurations.

To this end, let us refer to the problems (5) and (7). They both incorporate parameter(s) ξi

varying randomly from week to week and, hence, their optimal objective values are dependent
on the random parameter(s) and become by itself random variables, too, which we can denote
by Z|1|1| and Z|2|, respectively. Further, let us denote their expectations by E|1|1| and E|2|,
respectively. As one can see, the latter two represent the expected overall customer satisfaction
in the configurations C|1|1| and C|2|.a Then, important for us is to notice that the constraints
x1, x2 ≤ s/2 in (5) are relaxed to x1 + x2 ≤ s in (7). Hence, E|2| is computed over a broader set
of implementable decisions, and we can conclude:

E|1|1| ≤ E|2|. (10)

That is, we should expect an overall performance in C|2| to be at least not worse than that in
C|1|1|.b Our objective remains then to quantify this advantage.

How is this all related with mobile technologies? Or, in other words, how can the above comparison
of the scenarios C|1|1| and C|2| help us to investigate the effects of mobile technologies? We
proceed now to the basic idea behind our approach.

3.2.2 Mobile decision making

Let us introduce the following configuration CM|1|1| for our distribution system: the same two
representatives as in the case C|1|1| now utilize mobile technologies in their decision making (as
described in section 1.2). The transition from C|1|1| to the new mobile configuration CM|1|1| is
depicted in Figure 5.

We interpret the diagram to the right as follows: the two representatives are visiting their cus-
tomers as they did, but now equipped with mobile devices. The same initial stock s is not divided
between the representatives anymore. Instead, they make allocations from the common stock
according to the mobile policy formulated in section 1.2.

Let us assume without loss of generality that the 1st representative arrives to his customer before
the 2nd does. He makes then the following steps in his decision making:

1. learning the customer’s demand;

aFor rigorous proof see Proposition 1 in section 3.4.
bFor rigorous proof see Proposition 2 in section 3.4.
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Figure 5: Configurations C|1|1| and CM|1|1|

2. retrieving the information from the server on the currently available stock (=s) and the
number of customers not yet served (=2);

3. making an allocation that would maximize the overall system’s performance;
note that without knowing the demand realizations of the pending customers, he is going to
maximize the expected overall performance;

4. uploading the decision to the central computer.

We can conclude thereby that deciding on the allocation x1, he faces exactly the same decision
problem as the single representative in C|2| does as he arrives to his 1st customer. So they both
solve the same optimization problem (8).

Let us keep tracing the case CM|1|1|: the 1st representative, having made an allocation x1,
uploads this information from his mobile device to the central computer. The 2nd representative
will have then as much room as s − x1 units of the good for making an allocation x2, what he
does by solving a decision model that occurs to be the problem (9) which is also being solved by
the single representative in the scenario C|2| upon arriving to the 2nd customer.

Thus, decision making in CM|1|1| is identical with that in C|2|. With that, we resolve question
Q2 for the case CM|1|1|! As we see, the two representatives equipped with mobile facilities
imitate fully the work of a single representative servicing the two customers sequentially. We have
depicted this fact in the Figure 5 by the dashed line connecting the customers: it traces the route
of such imaginary (”virtual”) single representative.

Another conclusion that we can make here is the following one: by solving the same optimization
problems as the single representative solves while making allocations to the same customers, the
two mobile representatives obviously deliver on the long run the same average overall performance
EM|1|1| as the single representative does, and we have the following identity:

EM|1|1| = E|2|. (11)

At the same time, we have shown above with the formula (10) that the single representative in
configuration C|2| outperforms the two separate (non-mobile) representatives in C|1|1|. Hence,
the above identity proves also the advantage of the mobile solution against the non-mobile one,
since it empowers the two representatives to achieve the performance of the single ”virtual” one,
and we come to the following relationship between the expected overall performances:

E|1|1| ≤ EM|1|1| = E|2|.
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Let us make now the following remark: the optimal objective values in all above decision models
and their expected values are dependent on the initial weekly stock s, since s is incorporated as a
parameter in all these models, and we would like to rewrite the above relationship in the following
form:

E|1|1|(s) ≤ EM|1|1|(s) = E|2|(s). (12)

Our main objective remains then the quantification of such advantage delivered by mobile decision
making, for any initial stock s.

Note that the expected overall performance in the non-mobile case C|1|1| expresses as the sum of
the expected individual performances of the two representatives, what provides us with:

E|1|1|(s) = E|1|(a) + E|1|(a) = 2 · E|1|(s/2). (13)

Expressing E|2| requires more computational efforts, though — as we will see later.

The above illustrates our approach in studying the economic effects of mobile technologies. Let us
now briefly extend this modeling for the case of servicing 3 customers, after which we generalize
our approach for any configuration of a distribution system.

3.3 Servicing 3 customers

3.3.1 Servicing 3 customers by 3 representatives

Let us consider here the following two configurations:

C|1|1|1| ≡ C|1|3 : non-mobile case : 3 representatives, each assigned a single customer;

CM|1|1|1| ≡ CM|1|3 : mobile case : the same 3 representatives, utilizing mobile facilities.

Figure 6 sketches these two configurations.
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Figure 6: Configurations C|1|3 and CM|1|3
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First of all, let us answer the questions Q1 and Q2 in these two configurations, respectively: how
should decisions in them both be made given the weekly initial stock s? We keep assuming the
customer demands to be independent and identically distributed.

Our approach here will be the same as in the previous section. Let us refer to the case C|1|3 first.
Obviously, the company divides the initial stock between the representatives equally so that each
of them receives the quota a = s/3 for meeting his customer’s demand. After that they make
their decisions independently of each other upon arriving to the assigned customers and learning
their demands. That is, similar to (6), the representatives face the following decision problems:

x1

ξ1

−→ max

x1 ≤ a

x1 ≤ ξ1

x1 ≥ 0

x2

ξ2

−→ max

x2 ≤ a

x2 ≤ ξ2

x2 ≥ 0

x3

ξ3

−→ max

x3 ≤ a

x3 ≤ ξ3

x3 ≥ 0

(14)

The overall performance in any given week sums up from individual performances of the repre-
sentatives which turn out to be the optimal objective values of the above three problems.

Let us now refer to the case CM|1|3. The initial stock s is not divided between the representatives
anymore. We assume here without loss of generality that the representatives visit their customers
and make their allocations from the common stock s in the timely sequence 1 → 2 → 3, as the
dashed line in Figure 6 shows. How does the 1st representative decide on the allocation for the
1st customer upon learning his demand?

Remember the reasoning which gave us the answer to this question for the mobile scenario CM|1|1|
in section 3.2.2: the representatives, utilizing mobile facilities, together imitate the work of a single
”virtual” representative who visits the customers in the same sequence as they are being visited
by the ”real” representatives. Thus the 1st ”real” representative faces upon arriving to the 1st
customer the same problem as the single ”virtual” representative would do. This was found in
CM|1|1| to be the problem (8).

Using the same logic now for the case of having 3 customers, we make the 1st representative solve
the following optimization problem in scenario CM|1|3:

x1

ξ1

+ E

[

max
x2

{

x2

ξ2

+ E

[

max
x3

x3

ξ3

]}

]

−→ max

x1 ≤ s
x1 ≤ ξ1

x1 ≥ 0
x2 ≤ s − x1

x2 ≤ ξ2

x2 ≥ 0
x3 ≤ s − x1 − x2

x3 ≤ ξ3

x3 ≥ 0

(15)

20



Here the 1st representative arranges his decision x1 to be such that his individual performance
plus the expected overall performance of his colleagues gets maximal. Since the information on
the 2nd and 3rd customers’ demand is not available yet, this is the only way for him to contribute
to the maximization of the overall performance. On the 2nd stage, the decision x2 to be made
by the 2nd representative will have to allocate so much from the available stock s − x1 that his
individual performance plus the expected performance of the 3rd colleague gets maximal. The
3rd representative will maximize just his individual performance since his allocation is the last to
be, and he has as much room for it as s − x1 − x2 units.

As one may see, the above problem is a 3-stage stochastic linear program. The only decision vari-
able here is x1, since we cannot decide on the other allocations x2 and x3 before the corresponding
demand realizations become known. The problem can also be rewritten in the following form:

x1

ξ1

+ Q(x1) −→ max

x1 ≤ s

x1 ≤ ξ1

x1 ≥ 0

Q(x1) = E
[

Q(x1, ξ2)
]

Q(x1, ξ2) = max
x2

{

x2

ξ2

+ E

[

max
x3

ξ3

]
∣

∣

∣

∣

x2 ≤ s − x1, x2 ≤ ξ2, x2 ≥ 0
x3 ≤ s − x1 − x2, x3 ≤ ξ3, x3 ≥ 0

}

(16)

Again, Q(x1) is the expected recourse function expressing the expected value of the recourse func-
tion Q(x1, ξ2). The latter is itself the optimal objective value of the embedded 2-stage stochastic
program that delivers an optimal decision of the 2nd representative under demand realization
ξ2. This 2-stage program, in turn, embeds another linear program, which is single-stage and
corresponds to the final decision to be made by the 3rd representative.

So, we may say that the 1st representative, in presence of uncertainty concerning the 2nd and
3rd customers’ demands, fixes such an allocation x1 that would maximize this week’s overall
performance, by solving problem (16).

After that, the 2nd representative will make a decision x2 upon learning the demand ξ2. Note
that there are s − x1 units of the good left for 2 sequential allocations — to the customers 2
and 3. Then, how should the decision x2 be made? In fact, we have discussed this already in the
previous section: problem (8) gives us an optimal decision for the 1st of two mobile representatives
provided with an initial stock s. Hence, it fits our case, too: the 2nd representative should be
treated as the first one, the 3rd — as the second one, and their initial stock occurs to be s − x1.

So, we may say that our 2nd representative, in presence of uncertainty concerning the 3rd cus-
tomer’s demand, fixes such an allocation x2 that would maximize his and his 3rd colleague’s overall
performance, by adjusting properly problem (8) and solving it.

Finally, the 3rd representative will have s − x1 − x2 units left after the decisions x1 and x2 have
been made. He is the only one to make use of this remaining stock. Then, how should the decision
x3 be made? In fact, we have discussed this question already in configuration C|1|: problem (2)
gives us an optimal decision for the single representative provided with an initial stock s. Hence,
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it fits our case, too: the 3nd representative should be treated as this representative, and his initial
stock occurs to be s − x1 − x2.

So, we may say that the 3rd representative fixes such an allocation x3 that would maximize his
individual performance, by adjusting properly problem (2) and solving it.

With that we resolve question Q2 in configuration CM|1|3. We would like to summarize the
above as follows: three representatives utilizing mobile facilities, jointly execute sequential resource
allocations to N = 3 customers.

We can now turn to the question Q3 and compare the expected overall performance of the system
in the configurations C|1|3 and CM|1|3. We can use the same reasoning here as we used for
configurations C|1|1| and C|2|in section 3.2.1. Namely, let us refer to the decision problems (14)
and (15). Let E|1|3 and EM|1|3, respectively, denote the expectations of their optimal objective
values (which are by itself random variables, being dependent on random parameter(s)). Further,
E|1|3 and EM|1|3 represent the expected overall customer satisfactionc in the configurations C|1|3

and CM|1|3, and important for us becomes to notice that the constraints x1, x2, x3 ≤ s/3 in (14)
are relaxed to x1 + x2 + x3 ≤ s in (15). Hence, EM|1|3 is computed over a broader set of
implementable decisions, and we can conclude:

E|1|3(s) ≤ EM|1|3(s). (17)

That is, we should expect an overall performance in CM|1|3 to be at least not worse than that in
C|1|3, for any given initial stock s.d Our objective remains then to quantify this advantage.

3.3.2 Servicing 3 customers by 2 representatives

Let us consider now the following two configurations:

C|2|1| : non-mobile case : the 1st representative services the customers 1 and 3 sequentially,
while the 2nd representative is assigned the only customer no. 2;

CM|2|1| : mobile case : the same 2 representatives, utilizing mobile facilities.

Figure 7 depicts these two configurations. As always, we assume the customer demands to be
independent and identically distributed.

In C|2|1|, the company divides the initial stock s between two representatives. Consequently, the
1st representative receives twice as more as his colleague does: we can represent their quotas as 2a
and a, respectively, with a = s/3. Then, keeping in mind that the representatives work separately
of each other, we already know at this point how are the allocation decisions in this configuration
be made: the decision making of a single representative servicing 2 customers in a sequence was
discussed by us in configuration C|2|. Respectively, the decision making of a single representative
servicing a single customer was discussed in configuration C|1|.

cFor rigorous proof see Proposition 1 in section 3.4.
dFor rigorous proof see Proposition 2 in section 3.4.
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Figure 7: Configurations C|2|1| and CM|2|1|

In CM|2|1|, the initial stock is not divided between the representatives, so that they make their
allocations from the common resource pool. We assume again without loss of generality that the
representatives visit their customers and make their allocations in the timely sequence 1 → 2 → 3,
as the dashed line in Figure 7 shows. We can easily see that sequence of events in this mobile
environment copies that of the system CM|1|3discussed in the previous section. In other words,
here two representatives utilizing mobile facilities, jointly execute sequential resource allocations
to N = 3 customers. Hence, modeling carried out for CM|1|3 applies fully to the current case
CM|2|1|.

Thus we answered with the above questions Q1 and Q2. Let us turn now to the question Q3.
As one may guess, we should expect the mobile solution CM|2|1| to deliver a better (at least
a not worse) performance than its non-mobile counterpart C|2|1|. Indeed, the expected overall
performance in the non-mobile case is the sum of the expected individual performances of the two
representatives, so that

E|2|1|(s) = E|2|(2a) + E|1|(a) (18)

where E|2| is being computed as the expectation of the optimal objective value in (7), and E|1| —
as the expectation of the optimal objective value in (2), which enforce in our case the constraints
x1 + x3 ≤ 2a and x2 ≤ a, respectively.

The expected overall performance in CM|2|1| coincides with that in CM|1|3:

EM|2|1|(s) = EM|1|3(s), (19)

which is being computed as the expectation of the optimal objective value in (15), where any
sequence of decisions must satisfy x1 + x2 + x3 ≤ s, what provides us with a broader set of
implementable decisions, and hence, a better (a not worse) expected overall performance in the
mobile case CM|2|1| comparing to C|2|1|, again.

The above illustrates our approach in modeling the economic effects of mobile technologies. The
next section generalizes our modeling for the case of any configuration of a distribution system.
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3.4 General case: any configuration

The ideas presented in the preceding sections stay valid for any other topology of a distribution
system, as Figure 8 demonstrates.

→

Figure 8: Transition to the mobile decision making

The picture to the left presents there a distribution system where 3 representatives provide service
to 2 customers each, while the mobile solution is not implemented. The total stock is being
equally divided between the representatives (assuming the customer demands to follow the same
probability distribution).

The picture to the right illustrates the transition to the mobile solution in this system. The
same representatives provide their service to the same customers still, so that the assignment
of the customers to the agents is kept. At the same time, the total stock is not being divided
anymore. The allocations are made from the common resource pool using centralized data on the
currently available stock and the number of pending customers, with the objective of maximizing
the overall performance. If we assume that the customers are being visited by the representatives
in the timely sequence (shown in the figure by the dashed line), we conclude that the overall
system’s performance equals the performance of an imaginary single representative visiting the
customers in the same sequence. He, in turn, is assumed to outperform several independent
representatives in a non-mobile scenario.

Let us now formalize our approach. We consider a system with N customers which are partitioned
into K groups of n1, . . . , nK members, with each group assigned to a sales representative. The
customers have individual weekly demands ξ1, . . . , ξN which are not known in advance. At the be-
ginning of the week the company divides its initial stock s between the representatives who recieve
their quotas s1, . . . , sK according to the expected customer demands in their groups. Then, each
representative executes sequential product allocations to the assigned customers, upon learning
each individual demand. Each representative makes his allocation decisions with the objective
of maximizing his individual performance while not exceeding his individual stock. We assume
customer demands to be independent and identically distributed.
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We denote this (non-mobile) configuration of the distribution system by C|n1| . . . |nK |.

Now let us introduce mobile facilities into the company’s decision making and denote this new
(mobile) configuration by CM|n1| . . . |nK |. The company doesn’t divide the stock s between
the representatives anymore but rather uses it as a joint resource pool for centralized product
allocations, by utilizing mobile facilities. In this configuration the representatives imitate together
the work of a single imaginary (”virtual”) representative who services all N customers in the
same timely sequence as they are being serviced by the ”real” representatives. Let us denote such
equivalent ”virtual” configuration by C|N |. We will further assume without loss of generality the
above servicing sequence to be 1, . . . , N .

Hence, the decision making in both cases concerns efficient resource allocations in a sequence of n
customers, where n = n1, . . . , nK for each single representative in the 1st case, and n = N in the
2nd case.

Let now s denote the initial stock (initial resource supply) in a sequence of n customers. Then the
very first decision x1 in this sequence, being determined upon learning the demand ξ1, expresses
as an optimal solution to the following problem:

x1

ξ1

+ Eξ2

[

max
x2

{

x2

ξ2

+ Eξ3

[

. . . + Eξn

[

max
xn

xn

ξn

]}]

]

−→ max

x1 ≤ s
x1 ≤ ξ1

x1 ≥ 0
x2 ≤ s − x1

x2 ≤ ξ2

x2 ≥ 0
. . .

xn ≤ s −Pn−1
i=1 xi

xn ≤ ξn

xn ≥ 0

(20)

where, as always, ξi = 0 implies xi = 0 and the corresponding fraction in the objective equals 1
per definition.

Problem (20) is a n-stage stochastic linear program. It embeds by itself another stochastic program
corresponding to the allocation x2 to be done in the 2nd stage upon learning the demand ξ2. The
latter, in turn, embeds the stochastic program corresponding to subsequent decision x3, and so
on, up until the final n-th stage represented by a deterministic program delivering an optimal
decision xn under the demand realization ξn. At each of the stages we take into consideration the
expectation of the embedded program with respect to the distribution of demand to be disclosed
in the next stage. In other words, problem (20) embeds a sequence of nested stochastic programs.

We can give an equivalent formulation of (20) in terms of a dynamic program [8, p. 128]. Let us
consider decision making on the k-th stage (k = 1, . . . , n). Upon disclosing a customer demand ξk

there should an optimal decision xk be made which depends on ξk and also on the entire history
of the preceding decisions x1, . . . , xk−1. Let s̃ denote the stock available at the beginning of the
current stage. We obtain then xk as an optimal solution to the following problem:
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Zn−k+1(ξk, s̃) = max
xk

ξk

+ E [Qn−k(xk, ξk+1)]

xk ≤ s̃

xk ≤ ξk

xk ≥ 0

where

Qn−k(xk, ξk+1) = Zn−k(ξk+1, s̃ − xk)

with

Q0 ≡ 0

(21)

The subscript n− k + 1 of the optimal objective value Zn−k+1(ξk, s̃) corresponds to the number of
customers up from the current one to the end of the sequence. Function Qn−k(xk, ξk+1) is called
the recourse function. It represents the optimal objective value of the embedded program if the
demand realization in the next stage will occur to be ξk+1 while the available stock will amount
to s̃ − xk. The expected value of Qn−k(xk, ξk+1) defines the expected recourse function:

Qn−k(xk) = Eξk+1
[Qn−k(xk, ξk+1)] , (22)

which, hence, expresses the expected performance in all the future stages given a decision in the
current stage.

Thus, the first-stage decision x1 turns out to be a solution to the following problem:

Zn(ξ1, s) = max
x1

ξ1

+ Qn−1(x1)

x1 ≤ s

x1 ≤ ξ1

x1 ≥ 0

(23)

All subsequent stages k = 2, . . . , n are absorbed in (23) into the function Qn−1(x1) through the
corresponding expected values [43, p. 24].

Let us summarize: our ability to solve the sequence of problems (21) for any given s and any num-
ber of stages n would resolve the questions Q1 and Q2 in the non-mobile and mobile configurations,
respectively.

Let us now turn to the question Q3: which configuration of them two should we expect to deliver
a better overall performance, given the same initial stock s?

Let us at first clarify how do we define the expected overall performance. We introduced in section 1
the measure of the company’s overall performance in any given week as

G(x|ξ) =
x1

ξ1

+ . . . +
xN

ξN

, (24)

which has to be computed ex-post — i.e. after all allocations in response to the customer demands
have been committed. Hence, we define the expectation of G(x|ξ) with respect to the distribution
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of ξ as the system’s expected overall performance:

Eξ

[

G(x(ξ)|ξ)
]

, (25)

where the notation x(ξ) emphasizes the fact that the decision vector x is being computed as a
reaction to the customer demand ξ, according to some decision policy.

Let us now consider a single representative in the non-mobile environment, who services n cus-
tomers sequentially given an initial stock s. We define his expected individual performance exactly
in the same way as in (24)–(25) — just by substituting n for N — and denote it by E|n|. Let
us now show that if he makes his sequential allocation decisions by solving the sequence of prob-
lems (21) (k = 1, . . . , n) then his expected individual performance equals the expectation of the
optimal objective value of his first-stage problem (23), i.e. there holds the following

Proposition 1 (Expected overall performance)

E|n|(s) = Eξ1

[

Zn(ξ1, s)
]

Proof: Obviously, the above equality holds for n = 1. We will show that it holds for n = 2; this
proof can be then easily extended for any other positive n.

With n = 2 customers in the sequence, the 1st allocation is being determined as an optimal
solution to the problem (23) upon the available information ξ1 and hence, is computed as x∗

1(ξ1).
The 2nd allocation is determined as an optimal solution to (21) upon disclosing ξ2 and depends
on both x∗

1(ξ1) and ξ2 — hence, it is computed as x∗
2(ξ1, ξ2). According to the definition, we have:

E|n|(s) = Eξ1,ξ2

[

x∗
1(ξ1)

ξ1

+
x∗

2(ξ1, ξ2)

ξ2

]

= Eξ1,ξ2

[

x∗
1(ξ1)

ξ1

]

+ Eξ1,ξ2

[

x∗
2(ξ1, ξ2)

ξ2

]

=

= Eξ1

[

x∗
1(ξ1)

ξ1

]

+ Eξ1

[

Eξ2

[

x∗
2(ξ1, ξ2)

ξ2

]

]

= Eξ1

[

x∗
1(ξ1)

ξ1

+ Eξ2

[

x∗
2(ξ1, ξ2)

ξ2

]

]

=

= Eξ1

[

Z1(ξ1, s)
]

.

2

Hence, in order to express the expected performance of any sequential allocation decision making
we can just consider the expected value of the corresponding first-stage program.

Let us now turn to the non-mobile configuration C|n1| . . . |nK | and denote its expected overall per-
formance by E|n1| . . . |nK |. Having K separate representatives who service n1, . . . , nK customers
while provided with s1, . . . , sK units of the good, we conclude that

E|n1| . . . |nK |(s) = E|n1|(s1) + . . . + E|nK |(sK). (26)

In the mobile configuration CM|n1| . . . |nK | the entire decision making corresponds to that of a
single ”virtual” representative who services N customers sequentially, and, hence, we have
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EM|n1| . . . |nK |(s) = E|N |(s). (27)

Our objective for the rest of this section becomes to show the advantage of mobile decision making,
i.e., that the inequality E|n1| . . . |nK |(s) ≤ EM|n1| . . . |nK |(s) holds. Before we proceed to this
matter, let us consider our n-stage stochastic linear program once again and introduce one more
formulation of it, additionally to the nested formulation (20) and dynamic programming formu-
lation (21). First of all, let us refer to the case n = 2, which we discussed already in section 3.2
in the context of configurations C|2| and CM|1|1|. Problem (8) (rewritten here below to the left)
corresponds there to the 1st decision in the sequence. According to Ruszczyński and Shapiro [43,
pp. 16–19], we can formulate it also in the form shown here to the right:

max
x1

{

x1

ξ1

+ Eξ2

[

max
x2

x2

ξ2

]

}

x1 ≤ s

x1 ≤ ξ1

x1 ≥ 0

x2 ≤ s − x1

x2 ≤ ξ2

x2 ≥ 0

max
x1∈R

x2(·)∈X

Eω

[

x1

ξ1

+
x2(ω)

ξ2(ω)

]

x1 ≤ s

x1 ≤ ξ1

x1 ≥ 0

x2(ω) ≤ s − x1

x2(ω) ≤ ξ2(ω)

x2(ω) ≥ 0

In this equivalent formulation, x2 is not a second-stage variable anymore but a random variable
x2(·) from the space X of measurable functions from Ω to R. There is, however, an important
difference between random variables ξ2(ω) and x2(ω): the former represents the random data of
the problem with a given distribution, while the latter — the recourse action whose distribution
is not given [43, p. 19]. Hence, in this equivalent formulation we perform maximization of the
expected value over all possible values of the decision variable x1 and measurable functions x2(·)
that satisfy jointly the constraints.

This formulation can be generalized for the case of a n-stage problem. Considering the nested
formulation (20), we come to the following equivalent of it [43, p. 36]:

max
x(·)

Eω

[

x1(ω)

ξ1(ω)
+

x2(ω)

ξ2(ω)
+ . . . +

xn(ω)

ξn(ω)

]

x1(ω) ≤ s
x1(ω) ≤ ξ1(ω)
x1(ω) ≥ 0

x2(ω) ≤ s − x1(ω)
x2(ω) ≤ ξ2(ω)
x2(ω) ≥ 0

. . .
xn(ω) ≤ s −Pn−1

i=1 xi(ω)
xn(ω) ≤ ξn(ω)
xn(ω) ≥ 0

xi(ω) = Eω

[

xi(ω) | ξ[1,i](ω)
]

, i = 1, . . . , n

(28)
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It is necessary to make the following notes here:

• In the above problem, both ξ1 and x1 are deterministic. But, for notational convenience, we
will treat them as random variables ξ1(ω) and x1(ω) with some constant (deterministically
known) values ξ1(ω) ≡ ξ1 and x1(ω) ≡ x1, respectively.

• ξ(ω) = (ξ1(ω), . . . , ξn(ω)) is a realization of random demands; ξ[1,i](ω) = (ξ1(ω), . . . , ξi(ω))
comprises the demand realizations known at stage i.

• x(ω) = (x1(ω), . . . , xn(ω)) comprises any feasible vector of decisions to be made in response
to the random demands ξ(ω). Thus, x(·) is a mapping from the set of elementary outcomes
Ω to Rn.

• This mapping must nevertheless satisfy the last set of constraints called the nonanticipativity
constraints, which require that any decision at any stage i can depend only on the information
available up to this stage. In other words, x(·) is not allowed to fit decisions in earlier stages
to the information content out from ξ(ω) which becomes available in later stages. Hence,
for any two random outcomes ω1 and ω2 such that the demand vectors ξ(ω1) and ξ(ω2)
share the same history ξ[1,i] up to the stage i, the resulting vectors x(ω1) and x(ω2) have to
coincide in the stages x[1,i].

Remember that the expectation of the optimal objective value in the nested formulation (20) as
well as in the dynamic programming formulation (23) delivers the expected overall performance
E|n|(s). Hence, the same does the expected optimal objective value in the above formulation (28).
How to express it? As one can see, we just have to let the demand ξ1(ω) become random; the
decision x1 becomes not a deterministic but, respectively, a random variable x1(ω). Then, the
optimal objective value in (28) will return the expected overall performance E|n|(s).

We can also notice here that this formulation gives us an easier way to prove the Proposition 1,
either.

Further, we can eliminate the nonanticipativity conditions from (28) if we require explicitly that
the components xi(ω) of a decision vector x(ω) can depend on the random data observed up to
stage i, but not on the future observations, i.e., we require: xi(ω) = xi(ξ[1,i](ω)). So a decision xi =
xi(ξ[1,i]) is viewed as a function of (ξ1, . . . , ξn), and maximization is performed over appropriate
functional spaces [43, pp. 19, 36], [41, pp. 93–94]. Rearranging the terms in the constraints and
eliminating redundant constraints, we can finally transform (28) to:

max
x(·)

E

[

x1

ξ1

+
x2

ξ2

+ . . . +
xn

ξn

]

x1 + x2 + . . . + xn ≤ s

0 ≤ xi(ξ1, . . . , ξi) ≤ ξi, i = 1, . . . , n

(29)

We can now formulate and prove the following

Proposition 2 (Advantage of mobile solution)

∀s ≥ 0 : E|n1| . . . |nK |(s) ≤ EM|n1| . . . |nK |(s)
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Proof:

Indeed, let us refer to problem (29). Its optimal objective value equals E|n|(s). Thus, in order to
compute E|n1| . . . |nK |(s) we have to consider the optimal objective values of K instances of (20).
These K instances can be unified into one aggregate problem as follows. Let I = {I1, . . . , IK} be
the partition of the set {1, . . . , N} into customer groups, with n1 = |I1|, . . . , nK = |IK |. Then the
aggregate problem can be written as:

max
x(·)

E

[

x1

ξ1

+
x2

ξ2

+ . . . +
xn

ξN

]

∑

i∈I1

xi ≤ s1

. . . . . . . . . . . . . . . .
∑

i∈IK

xi ≤ sK

0 ≤ xi(ξj : j ≤ i, j ∈ Ik) ≤ ξi, i ∈ Ik, k = 1, . . . , K

From the other side, computing EM|n1| . . . |nK |(s), we need to consider the optimal objective
value of a single instance of (29) with n = N . As one can see, its constraints is the relaxation of
those of the above aggregate problem due to the following:

• Let us consider any mapping xi(ξj1 , ξj2 , . . . , ξi) feasible (implementable) in the aggregate
problem. It corresponds to the non-mobile decision making at some stage in some cus-
tomer group. We see that it can be implemented in (29), too — by means of the mapping
xi(ξ1, . . . , ξj1 , . . . , ξj2 , . . . , ξi), which incorporates the same arguments as its non-mobile coun-
terpart, but also, possibly, some others, since we have a longer history ξ[1,i] behind us upon
reaching the customer i under mobile decision making.

• Obviously, the first constraint in (29) weakens the first K constraints of the aggregate
problem.

Hence, in the mobile case we compute the optimal objective value over a broader (at least not
narrower) set of feasible mappings, what proves the proposition. 2

To prove this and to quantify this advantage of mobile decision making for any system configuration
stays our objective. As an open question stays for us also solving our multistage decision problems
modeled in this section.

4 Economic effects: Bernoulli demand distribution

With the above objective, let us try at first to approach distribution systems of lowest possible
dimensions while assuming customer demands to follow a particularly simple probability distrib-
ution.
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Let us assume the customer demands to follow one and the same probability distribution, which
we choose to be the Bernoulli one, i.e., a discrete distribution with the state space {0, 1}, whereby
a customer has the demand 1 with the probability 0 < p < 1. In other words, the probability
mass function of any individual customer demand ξi looks as:

x 0 1

Pr{ξi = x} 1 − p p

4.1 Configuration C|1|

Let us consider at first the single-customer case C|1| introduced in section 3.1, see page 13. Upon
arriving to the customer and learning his demand ξ1 the representative faces the following decision
problem:

Z1(ξ1, s) = max
x1

ξ1

x1 ≤ s

x1 ≤ ξ1

x1 ≥ 0

We know how to solve this deterministic linear program: the greatest feasible value of the variable
maximizes the objective function. Then, the two possible values of ξ1 induce the following optimal
objective values:

ξ1 : 0 1

Z1 : 1 min{s, 1}

Then the expectation E
[

Z1(ξ1, s)
]

expresses in the case 0 ≤ s ≤ 1 as:

E[Z1] = 1 · (1 − p) + s · p = 1 − p + sp = 1 − p(1 − s).

Obviously, in the case s > 1 we have E[Z1] = 1.

So, the expected overall performance expresses as:

E|1|(s) = E
[

Z1(ξ1, s)
]

=







1 − p · (1 − s), 0 ≤ s ≤ 1

1, s > 1
(30)

4.2 Configurations C|1|1| and CM|1|1|

We introduced and discussed these configurations with 2 customers and 2 representatives in sec-
tion 3.2, see page 14. Let us see what optimal decisions are to be there, and evaluate the average
overall performance on the long run in both configurations.
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4.3 Scenario C|1|1|

As already shown in section 3.2.1, the 1st and the 2nd representatives face in configuration C|1|1|
once a week the problems (6.1) and (6.2), respectively. Hence, each of them behaves as the single
representative in configuration C|1|. If the individual stock of each representative amounts to
a = s/2, then, according to formula (26), we have the expected overall performance

E|1|1|(s) = E|1|(a) + E|1|(a) = 2 · E|1|(a).

Referring to formula (30) for E|1|(s), we obtain:

E|1|1|(s) =







2 − p · (2 − s), 0 ≤ s ≤ 2

2, s > 2
(31)

4.4 Scenario CM|1|1|

In the mobile scenario CM|1|1| the representatives achieve the performance of a single ”virtual”
representative, what we stated by the formula (27). As already shown in the section 3, the 1st
representative, who arrives (without loss of generality) to his customer first, faces the optimization
problem (8), which we rewrite here in a slightly modified form:

Z2(ξ1, s) = max
x1

ξ1

+ Q1(x1)

x1 ≤ s

x1 ≤ ξ1

x1 ≥ 0

Q1(x1) = E
[

Q1(x1, ξ2)
]

Q1(x1, ξ2) = max
x2

{

x2

ξ2

∣

∣

∣

∣

x2 ≤ s − x1, x2 ≤ ξ2, x2 ≥ 0

}

(32)

The only decision variable here is x1: the allocation to the 1st customer is being made under
uncertainty concerning the 2nd customer’s demand.

How are we going to treat the function Q1(x1)? As one may see, this is the expectation of 2nd
representative’s performance under condition that there are s − x1 units of the good left at his
disposal, and, hence,

Q1(x1) = E
[

Q1(x1, ξ2)
]

= E
[

Z1(ξ1, s − x1)
]

= E|1|(s − x1).

Referring to formula (30) for E|1|(s) and substituting s − x1 for s there, we obtain the following
expression of Q1(x1):
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Q1(x1) =







1 − p(1 − s + x1), 0 ≤ s − x1 ≤ 1

1, s − x1 > 1
=







1 − p + p(s − x1), s − 1 ≤ x1 ≤ s

1, x1 < s − 1

(33)

Now the problem (32) can be rewritten as

Z2(ξ1, s) = max

{

x1

ξ1

+ Q1(x1)

∣

∣

∣

∣

x1 ∈ [0, min{ξ1, s}]

}

where, as always, ξ1 = 0 implies x1 = 0 and the corresponding fraction equals 1 per definition.

How can we obtain the expected overall performance EM|1|1|(s)? As stated by Proposition 1 in
section 3.4, the expected overall performance in this configuration is given by the expected value
of Z2(ξ1, s). Hence, we can compute EM|1|1|(s) in a similar way as we computed E|1|(s): since
the random parameter ξ1 has a finite state space {0, 1}, we may determine the optimal objective
value Z2(ξ1, s) for each value of the random parameter, and then express the expectation. Let us
compute the optimal objective value Z2(ξ1, s) for each possible realization of ξ1:

(a) ξ1 = 0 ⇒ according to the constraints in (32), we have an only feasible value of the variable:
x1 = 0. Hence, the optimal objective value expresses as:

Z2(0, s) = 1 + Q1(0) = 1 +







1 − p(1 − s), 0 ≤ s ≤ 1

1, s > 1
=







2 − p(1 − s), 0 ≤ s ≤ 1

2, s > 1

(b) ξ1 = 1 ⇒ we have to maximize the objective function on the closed interval:

x1

1
+ Q1(x1) −→ max

[0,min{1,s}]

As one may see, the objective function is continuous (piecewise linear) and monotonically
increasing in x1. Hence, the greatest possible value of the variable delivers the optimum to
the objective function:

x∗
1 = min{1, s} =

{

s, s ≤ 1
1, s > 1

Z2(1, s) = x∗
1 + Q1(x

∗
1) =







s + 1 − p, s ≤ 1

1 +

{

1 − p + p(s − 1), 0 ≤ s − 1 ≤ 1
1, s − 1 > 1

}

, s > 1
=

=







s + 1 − p, s ≤ 1
2 − p(2 − s), 1 < s ≤ 2
2, s > 2

So, the optimal objective values are known under all possible realizations of the random para-
meter ξ1. Hence, the distribution of Z2(ξ1, s) is known to us, and we can express its expectation
E

[

Z2(ξ1, s)
]

:
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E
[

Z2(ξ1, s)
]

= Pr{ξ1 = 0} · Z2(0, s) + Pr{ξ1 = 1} · Z2(1, s).

We split the evaluation of this expression into three parts:

(1) 0 ≤ s ≤ 1 :

E[Z2] = (1 − p) · (2 − p(1 − s)) + p · (s + 1 − p) =

= 2 − 2p − p + p2 + ps − p2s + ps + p − p2 = 2(1 − p) + ps(2 − p).

(2) 1 < s ≤ 2 :

E[Z2] = (1 − p) · 2 + p · (2 − p(2 − s)) = 2 − 2p + 2p − 2p2 + p2s = 2 − p2(2 − s).

(3) s > 2 :

E[Z2] = (1 − p) · 2 + p · 2 = 2.

Then, we can summarize: the average overall performance of the two representatives in the mobile
scenario CM|1|1| with a stock s replenished weekly, equals on the long run that of one single
representative in scenario C|2|, which both express as:

E|2|(s) = EM|1|1|(s) =











2(1 − p) + ps(2 − p), 0 ≤ s ≤ 1

2 − p2(2 − s), 1 < s ≤ 2

2, s > 2

(34)

4.5 Comparing C|1|1| and CM|1|1|

We compare now here the overall performance of the representatives in scenarios C|1|1| and
CM|1|1| according to the formulas (31) and (34) obtained above. Figure 9 displays the two
functions E|1|1|(s) and EM|1|1|(s) for some particular values of p: we chose, for instance, p =
1
4
, 1

2
, 3

4
.

As Proposition 2 states, the advantage of mobile configuration holds in general. Still, one can
verify the inequality E|1|1|(s) ≤ EM|1|1|(s) explicitly by comparing the expressions of these
two functions. Such verification can show how interrelationships between parameters make the
functions differ from each other, and what parameter values would make them equal. We have
presented this verification in Appendix A.

The advantage of CM|1|1| can also be expressed in per cent relative to C|1|1|, as [EM|1|1| −
E|1|1|]/E|1|1|. We display it graphically for the chosen above demand probabilities p = 1

4
, 1

2
, 3

4
in

Figure 10.
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Figure 9: Comparison of mobile and non-mobile performances
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Figure 10: Relative advantage of mobile solution CM|1|1| at different demand probabilities (in
%)

4.6 Servicing 3 customers

We are going to quantify now the effects of the mobile solution in a distribution system that
incorporates 3 customers. Thereby we can distinguish between the cases where the whole job is
carried out by either 2 or 3 representatives.

4.6.1 Servicing 3 customers by 3 representatives

We compare here configurations C|1|3 and CM|1|3, which we introduced and discussed in sec-
tion 3.3.1, see page 19.

Let us refer at first to the non-mobile configuration C|1|3. Three identical representatives, work-
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ing independently of each other, receive equal quotas from the common stock s to serve their
customers: s = 3a. Hence, the expected overall performance in this case can be found as

E|1|3(s) = 3 · E|1|(s/3).

Referring to formula (30) for E|1|(s), we obtain:

E|1|3(s) =







3 − p · (3 − s), 0 ≤ s ≤ 3

3, s > 3
(35)

Let us now refer to the mobile configuration CM|1|3. The decision making of the 1st representative
is represented in this case by the 3-stage stochastic program (16), which we rewrite here in a slightly
modified form:

Z3(ξ1, s) = max
x1

ξ1

+ Q2(x1)

x1 ≤ s

x1 ≤ ξ1

x1 ≥ 0

Q2(x1) = E
[

Q2(x1, ξ2)
]

Q2(x1, ξ2) = max
x2

{

x2

ξ2

+ E

[

max
x3

x3

ξ3

] ∣

∣

∣

∣

x2 ≤ s − x1, x2 ≤ ξ2, x2 ≥ 0
x3 ≤ s − x1 − x2, x3 ≤ ξ3, x3 ≥ 0

}

(36)

As we already know, function Q2(x1) proves to be found as EM|1|1|(s − x1), since it expresses
the expected performance of the 2nd and 3rd representatives with the stock s− x1 left after their
1st colleague’s decision. Then, referring to formula (34) for EM|1|1|(s) and substituting s − x1

for s there, we obtain the following expression of Q2(x1):

Q2(x1) =











2(1 − p) + p(s − x1)(2 − p), 0 ≤ s − x1 ≤ 1

2 − p2(2 − (s − x1)), 1 < s − x1 ≤ 2

2, s − x1 > 2

=











2(1 − p) + p(s − x1)(2 − p), s − 1 ≤ x1 ≤ s

2 − p2(2 − (s − x1)), s − 2 ≤ x1 < s − 1

2, x1 < s − 2

(37)

Now the problem (36) can be rewritten as

Z3(ξ1, s) = max

{

x1

ξ1

+ Q2(x1)

∣

∣

∣

∣

x1 ∈ [0, min{ξ1, s}]

}
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where, as always, ξ1 = 0 implies x1 = 0 and the corresponding fraction equals 1 per definition.

How to express the average overall performance in this scenario on the long run? As we already
know, the expected overall performance in this configuration is given by the expectation of the
optimal objective value Z3(ξ1, s). Again, we can express EM|1|3(s) by computing Z3(ξ1, s) for
each possible realization of the random parameter ξ1. Let us do this.

One can easily do this since the objective function in (4.6.1) is continuous, piecewise linear and
monotonically increasing function (these properties can be verified directly). Hence, the greatest
possible value of the argument will deliver an optimum to the objective function.

(a) ξ1 = 0 ⇒ we have the only feasible value of the variable: x1 = 0. Hence, the optimal
objective value expresses as:

Z3(0) = 1 + Q2(0) =

= 1 +











2(1 − p) + ps(2 − p), 0 ≤ s ≤ 1

2 − p2(2 − s), 1 < s ≤ 2

2, s > 2

=











3 − 2p + ps(2 − p), 0 ≤ s ≤ 1

3 − p2(2 − s), 1 < s ≤ 2

3, s > 2

(b) ξ1 = 1 : Since the greatest possible value of the variable is optimal, we have:

x∗
1 = min{1, s} =

{

s, s ≤ 1

1, s > 1

Z3(1) = x∗
1 + Q2(x

∗
1) =



















s + 2(1 − p), s ≤ 1

1 +











2(1 − p) + p(s − 1)(2 − p), 0 ≤ s − 1 ≤ 1

2 − p2(2 − (s − 1)), 1 < s − 1 ≤ 2

2, s − 1 > 2











, s > 1

=



















s + 2(1 − p), s ≤ 1

3 − 2p + p(s − 1)(2 − p), 1 < s ≤ 2

3 − p2(3 − s), 2 < s ≤ 3

3, s > 3

So, the optimal objective values are known under all possible realizations of the random para-
meter ξ1. Hence, the distribution of Z3(ξ1, s) is known to us, and we can express its expectation
E [Z3(ξ1, s)]:

EM|1|3(s) = E
[

Z3(ξ1, 3)
]

= Pr{ξ1 = 0} · Z3(0) + Pr{ξ1 = 1} · Z3(1).

We split the evaluation of this expression into four parts:

(1) 0 ≤ s ≤ 1 :

E[Z3] = (1 − p) · (3 − 2p + ps(2 − p)) + p · (s + 2(1 − p)) =
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= 3 − 3p + 3ps − 3p2s + p3s = 3 − 3p + ps(p2 − 2p + 1 − p + 2) =

= 3 − 3p + ps(2 − p) + ps(1 − p)2.

(2) 1 < s ≤ 2 :

E[Z3] = (1 − p) · (3 − p2(2 − s)) + p · (3 − 2p + p(s − 1)(2 − p)) =

= 3 − 6p2 + 3p2s + 3p3 − 2p3s = 3 − 3p2(2 − s) − p3(2s − 3).

(3) 2 < s ≤ 3 :

E[Z3] = (1 − p) · 3 + p · (3 − p2(3 − s)) = 3 − 3p3 + p3s = 3 − p3(3 − s).

(4) s > 3 :

E[Z3] = (1 − p) · 3 + p · 3 = 3.

Then, we can summarize: the average overall performance of the three representatives in the
mobile scenario CM|1|3, provided with a fixed stock s weekly, expresses on the long run as

EM|1|3(s) = E|3|(s) =























3 − 3p + ps(2 − p) + ps(1 − p)2, 0 ≤ s ≤ 1

3 − 3p2(2 − s) − p3(2s − 3), 1 < s ≤ 2

3 − p3(3 − s), 2 < s ≤ 3

3, s > 3

(38)

4.6.2 Comparing C|1|3 and CM|1|3

We compare now here the overall performance of the representatives in scenarios C|1|3 and CM|1|3

according to the formulas (35) and (38) obtained above. Figure 11 displays two functions E|1|3(s)
and EM|1|3(s) for p = 1
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Figure 11: Comparison of mobile and non-mobile performances of 3 representatives
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Again, as Proposition 2 states, the advantage of mobile configuration holds in general: i.e., in our
case it stays true for any probability p. Still, one can verify the inequality E|1|3(s) ≤ EM|1|3(s)
explicitly by comparing the expressions of these two functions. Such verification can show how
interrelationships between parameters make the functions differ from each other, and what para-
meter values would make them equal. We have presented this verification in Appendix A.

The advantage of CM|1|3 can also be expressed in per cent relative to C|1|3, as [EM|1|3 −
E|1|3]/E|1|3. We display it graphically for the chosen above demand probabilities p = 1

4
, 1

2
, 3

4
in

Figure 12.
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Figure 12: Relative advantage of mobile solution CM|1|3 comparing to C|1|3 at different demand
probabilities (in %)

4.6.3 Servicing 3 customers by 2 representatives

We consider here configurations C|2|1| and CM|2|1|introduced and discussed in section 3.3.2, see
page 22. We sketch them here once again in Figure 13.

Decision making in both configurations is already known to us: in C|2|1| it is carried out as in
C|1|1| and C|1|, while in CM|2|1| it is equivalent to the case C|3|, and hence, to CM|1|3 — which
we have analyzed in the previous section.

The overall performance express in the non-mobile case C|2|1| as:

E|2|1|(s) = E|2|

(

2

3
s

)

+ E|1|

(

1

3
s

)

=
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Figure 13: Configurations C|2|1| and CM|2|1|

=







2(1 − p) + p · 2
3
s(2 − p), 0 ≤ 2

3
s ≤ 1

2 − p2(2 − 2
3
s), 1 < 2

3
s ≤ 2

2, 2
3
s > 2

+

{

1 − p(1 − 1
3
s), 0 ≤ 1

3
s ≤ 1

1, 1
3
s > 1

=

=







2 − 2p + 2
3
ps(2 − p), 0 ≤ s ≤ 3

2

2 − p2(2 − 2
3
s), 3

2
< s ≤ 3

2, s > 3
+

{

1 − p + 1
3
ps, 0 ≤ s ≤ 3

1, s > 3
=

=







3 − 3p + 5
3
ps − 2

3
p2s, 0 ≤ s ≤ 3

2

3 − (2p2 + p)(1 − 1
3
s), 3

2
< s ≤ 3

3, s > 3
(39)

In CM|2|1| the expected overall performance coincides with E|3|(s) given by formula (38).

Figure 14 displays the overall performance on the long run in both scenarios graphically, for some
particular demand probabilities p = 1
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Figure 14: Mobile and non-mobile performances of 2 representatives servicing 3 customers

The advantage of mobile configuration holds in general — as stated by Proposition 2.

Figure 15 displays the relative advantage
(

EM|2|1|−E|2|1|
)

/E|2|1|, for the chosen above demand
probabilities p = 1

4
, 1

2
, 3

4
:
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Figure 15: Relative advantage of mobile solution CM|2|1| comparing to C|2|1| at different demand
probabilities (in %)

As one may see, this advantage of CM|2|1| comparing to C|2|1| is essentially lower than the
advantage of CM|1|3 comparing to C|1|3, namely due to the fact that one of the representatives
in the non-mobile scenario C|2|1| services two customers alone, what makes him more efficient
than 2 independent representatives servicing the same two customers in the non-mobile scenario
C|1|3. This makes C|2|1| closer to its mobile counterpart CM|2|1|, and so CM|2|1| shows a lesser
advantage.

4.7 Average mobile performance per customer

After we have analyzed the performance of the representatives in all scenarios from C|1|1| to
CM|2|1|, let us raise the following question: having identical customers everywhere in all these
scenarios, and setting always the initial weekly stock per customer to a, what is the average per-
formance of the representatives per customer then? We are especially interested in comparing
the mobile scenarios CM|1|1| and CM|1|3 here, since they incorporate different numbers of cus-
tomers: 2 and 3, respectively. Hence, the total weekly stocks amount in these scenarios to 2a
and 3a, respectively. Thus, we are going to compare EM|1|1|(2a)/2 and EM|1|3(3a)/3, and we
display at first these specific performances graphically for the demand probabilities p = 1

4
, 1

2
, 3

4
in

Figure 16.

As we see, an average customer gets in most cases a better service in scenario CM|1|3 — at least
at the chosen demand probabilities.

Let us also display the relative service improvement
[

EM|1|3(3a)/3
EM|1|1|(2a)/2

− 1
]

which an average customer

gets in CM|1|3 comparing to CM|1|1|, depending on how much the company reserves for him
weekly. We do this for the chosen above demand probabilities p = 1

4
, 1

2
, 3

4
in Figure 17.
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Figure 16: Average performance per customer in mobile scenarios CM|1|1| and CM|1|3
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Figure 17: Service improvement for the average customer in CM|1|3 comparing to CM|1|1| at
different demand probabilities (in %)

So such customer integration into a more global resource pool promises more to an average cus-
tomer. We might expect such effect in configurations of higher dimensions: if the representatives
service their assigned territories independently of each other, i.e. each provides his service sequen-
tially to the customers within a particular cluster, then the consolidation of all resources into a
common pool and allocation from this pool by means of mobile technologies globally might lead
to a better service without any change of the weekly stock s !

But, we have to discuss here another important question. We are speaking about the average
customer (who presumably gets a better service), but who is he? He is rather an imaginary
customer. Can we say that the service improves for all customers somehow equally, namely by a
percentage like the one given by the Figure 17?

The answer is rather no: as one may guess, servicing in a sequence is order-dependent. So it
makes difference for a particular customer to be at the end of the sequence or at its beginning: if
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we recall how the allocation decisions of the representatives in the configurations analyzed above
(e.g. CM|1|1| and CM|1|3) are made, we will notice that under Bernoulli demand distribution
the decision was always to give the customer as much as possible (remember how it sounded:
”the greatest possible value of the argument delivers the optimum to the objective function”).
Hence, the customers at early stages will always have in average a better service, and the farther a
particular customer from the beginning of the sequence, the worse his servicing is expected to be
then, since the probability that the stock has been essentially exhausted at the preceding stages
(regardless of the other customers) can be only higher. So we might expect that the earlier stages
are more ”profitable” then the later ones, and there might be customers in the system for whom
the integration in a global mobile servicing means definitely worsening of service even though the
overall system performance improves. And so we can formulate our further research questions
here:

Q4: How could we provide a more fair resource allocation? By which mechanism?

Q5: Does such ”greedy” allocation policy, which were observing in this section, stay always opti-
mal, or not?

As we will see later, the answer to Q5 is no: not always, there are demand distributions, under
which the allocations have to be made moderately. Concerning Q4, we might suggest to alternate
weekly the sequential ordering (e.g. by a cyclic shift), making the customers appear equally
frequent at the beginning as well as at the end of the sequence. But, unfortunately, this solution
seems to be impractical, and we have to strive to find more appropriate ones.

5 Economic effects: any finite discrete distribution

Now, after we went in section 4 through a number of configurations, our approach in analyzing
effects of mobile technologies seems to be sketched, and we could apply it now to distribution
systems of higher dimensions: we would have to continue resolving the function E|n|(s) recursively
for greater and greater values of n, until all required E|nk|(s) and, finally, E|N |(s) become known.

Let us now consider customer demands that follow some arbitrary discrete distribution with finite
support. I.e., each demand ξi, i = 1, . . . , N, is assumed now to have the following probability
mass function (pmf):

x d1 . . . dm

Pr{ξi = x} p1 . . . pm

(40)

with 0 ≤ d1 < . . . < dm.

Do we have another way — other than recursive computation — to obtain the optimal first-stage
decision x∗

1, as well as to express the expected overall performance E|n|(s), for any n ?
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5.1 Forming a deterministic equivalent

Let us refer to formulation (29) of the multistage stochastic linear program, given in section 3.4
on page 29. We repeat this formulation once again here:

max
x(·)

E

[

x1

ξ1

+
x2

ξ2

+ . . . +
xn

ξn

]

x1 + x2 + . . . + xn ≤ s

0 ≤ xi(ξ1, . . . , ξi) ≤ ξi, i = 1, . . . , n

(41)

Recall that this formulation replaces the sequence of nested objective functions with the single
one, while the maximization is performed over a set of measurable mappings xi(ξ1, . . . , ξi). Its
optimal objective value expresses the expected overall performance E|n|(s) prior to learning any
customer demand. Consequently, having in the first stage the demand ξ1 already deterministic,
we obtain with (41) the optimal first-stage decision x∗

1.

Obviously, in case of discrete finite demand distributions, we can express the objective function
in (41) as a deterministic linear function, as well as represent the entire problem as one large
deterministic linear program.

To do this, let us represent all possible realizations of the random data in our problem in the form
of a stochastic decision tree [41, p. 29], [24, p. 119], [8, pp. 129–130]. Figure 18 gives an example
of it assuming n = 4 and {1, 2} to be the state space of the random demands ξ1, . . . , ξ4.
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Figure 18: Example of a stochastic decision tree

Let us review this example. In the 1st stage the random data ξ1 has two possible realizations.
We respond to the random demand in this stage by means of the mapping x1(ξ1). In the 2nd
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stage, the random data (ξ1, ξ2) has four possible realizations, and we must define response to the
corresponding four scenarios by means of the mapping x2(ξ1, ξ2). Then, in the 3rd stage, the
random data (ξ1, ξ2, ξ3) is represented by 8 possible scenarios, to which we respond by means of
x3(ξ1, ξ2, ξ3) — having to define 8 values here. On the last stage the number of possible scenarios
reaches 16, and the mapping x4(ξ1, . . . , ξ4) must define 16 values, respectively. Thus, we can
associate mapping x1(ξ1) with its two values x1

1, x
2
1, then mapping x2(ξ1, ξ2) with its four values

x11
2 , x12

2 , x21
2 , x22

2 , and so on. Since our (yet unknown) mappings x1(·), . . . , x4(·) are fully defined by
their values, we can treat the latter as just variables to which we should assign values optimally.
Then, in the case presented by Figure 18, we will have 2 + 4 + 8 + 16 = 30 variables in total.

Thus, having a finite number of scenarios in each stage to count on, and assigning a decision
variable in each stage to each possible scenario, we can rewrite (41) as the following program:

max
M

∑

t=1

Pt ·

[

xt
1

ξt
1

+
xt

2

ξt
2

+ . . . +
xt

n

ξt
n

]

xt
1 + xt

2 + . . . + xt
n ≤ s, t = 1, . . . ,M

0 ≤ xt
i ≤ ξt

i , i = 1, . . . , n, t = 1, . . . ,M

(42)

where M is the total number of scenarios. Since each scenario corresponds to a path from the root
to one of the leaves in the stochastic decision tree, the probability Pt of realization of scenario t is
given by

Pt =
n

∏

i=1

pt
i,

where pt
i is the probability for the demand in stage i to follow the path t. I.e., Pt is the product

of the probabilities associated with the edges constituting the path t. Respectively, ξt
i and xt

i are
the demand realizations and decisions associated with these edges. Formulation (42) is also called
deterministic equivalent program.

Apparently, a term Pt ·
xt

i

ξt

i

will have to be included in the summation in (42) as many times, as

many paths in the stochastic decision tree are traversing through the corresponding edge in the
i-th stage. Let us denote the number of edges in stage i of the stochastic decision tree by mi,
and associate decision variables xj

i , j = 1, . . . ,mi with these edges. Let us also denote by ξj
i and

pj
i the demand realizations and the probabilities corresponding to these edges, respectively, and

by P j
i — the probability of traversing through the corresponding edge while starting at the root.

Obviously, the latter is expressed as the product of the probabilities of all preceding edges and of
this edge pj

i . Then, we can rewrite (42) also in the following form:

max

m1
∑

j=1

P j
1

xj
1

ξj
1

+ . . . +
mn
∑

j=1

P j
n

xj
n

ξj
n

xj1
1 + . . . + xjn

n ≤ s, ji = 1, . . . ,mi, i = 1, . . . , n

0 ≤ xj
i ≤ ξj

i , i = 1, . . . , n, j = 1, . . . ,mi

(43)
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In this formulation the variables appear in the objective exactly once, since we have grouped
together their multiple appearances in the objective of (42). The constraints remain in fact the
same: we only have adjusted them to the notation properly.

Let us now estimate the size of the above linear program, having n stages in our sequential decision
making and provided with m possible realizations of each customer demand. We have, obviously,
in total

m1 + . . . + mn

decision variables with m1 = m, m2 = m2, . . . , mn = M = mn. Hence, the number of the
variables equals the sum of geometric series:

m ·
mn − 1

m − 1
.

The number of constraints is easier to determine with the formulation (42). Namely, the first
set of inequalities provides us with M = mn constraints, while the second set — with one more
constraint and a nonnegativity for each of the variables.

Let us consider, for example, the case with n = 4 stages and m = 2 possible demand realizations.
Then, in terms of a standard linear program of the form

max cT x

Ax ≤ b

x ≥ 0

we have to deal with the matrix A of dimension 46 × 30. For the sake of convenience, let us
nevertheless turn back to the original form of our linear program:

max cT x

Ax ≤ b1

0 ≤ x ≤ b2

(44)

Then, assuming the state space of the random demands to be {1, 2}, we obtain the components
A, b1, b2, c of our linear program as presented in Figure 19.

The case when the state space contains 0 as a possible demand realization is a special one. As
we know, a demand realization ξi = 0 implies the decision xi = 0, and the corresponding fraction
in the objective equals 1 by definition. In this case we have to perform some pre-processing of
the model (43). Indeed, those variables that correspond to the edges associated with demands
ξj
i = 0 are known in advance to be equal 0; their contribution to the objective function value is

also known in advance. Hence, we can exclude these variables from the model, what also reduces
by that its size. Namely, having n stages with identically distributed demands, we reduce the
number of variables by n.

It is not hard to develop a procedure that creates the components of the model (43) for any given
n and any given finite demand distributions, and then pass this model to any convenient LP
solver. By that we can compute the expected overall performance prior to knowing any demand
realization, as well as the first decision x∗

1 upon learning the first demand realization ξ1. In the
same way we obtain the decision x∗

2 as the first one in the sequence of n−1 customers while having
the stock reduced to s− x∗

1, and so on. This approach seems to be universal and, probably, more
transparent than the recursive computation demonstrated in section 4.
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Figure 19: Components of linear program (43) for n = 4, ξi(ω) ∈ {1, 2}, p1 = p2 = 0.5

But, as one may guess, there are also the following disadvantages in this approach:

• since the problem size grows exponentially with the number of stages, the straightforward
solution of a problem with an LP solver becomes even with a moderate number of stages
unrealistic. For example, having 10 stages in the sequence and the demand state space
{1, 2, 3}, we are faced with the linear program (44) of dimension ca. 90, 000 × 60, 000.

• the above approach does the job only for one fixed value of s at a time, while it were much
better for us to have the expected overall performance expressed as a function of s — as we
had it resolving E|n|(s) recursively.

The first of these two issues can still be resolved efficiently. The special structure of our large-scale
linear program makes it tractable by stochastic programming decomposition methods like the most
frequently used L-shaped method [8, p. 155]. See more on this matter in the textbooks [40, 24, 8].

But still, the ability to solve our multistage problem efficiently for any given s doesn’t resolve the
second issue. How can we work it through?

As we could already notice in section 4, the expected recourse functions Q(x1) as well as the
expected overall performance functions E|n|(s) were all piecewise linear and concave. In fact,
this property holds for any finite demand distributions and any number of stages [41, pp. 76,
96], [8, p. 129]. Hence, in order to express a function E|n|(s) we would have to compute its
values at the breakpoints by solving the corresponding stochastic program (or its deterministic
equivalent) several times, and then drawing a linear spline through these points. The question
is: how can we know in advance the breakpoints of function E|n|(s)? If we take a look on the
functions EM|1|1|(s) and EM|1|3(s) (formulas (34) and (38) as well as Figures 9 and 11 on
pages 35 and 38, respectively) we see that they have their breakpoints at s = 0, 1, 2, . . .. So we
could guess that in case of Bernoulli distribution the breakpoints are represented by the integer
values of s = 0, . . . , n. But — what are they in the general case of any finite distribution?

We can refer to Powell and Cheung [34] for another approach. They consider a special class of
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multistage stochastic programs with the so-called tree recourse and develop a method that allows
to find the expected recourse function exactly using a backwards recursion. This method proves
to be very efficient, being able to find the expected recourse function explicitly in just seconds,
even for large problems. Although our stochastic multistage program can be represented as a
multistage tree recourse problem, still such special class of problems seems to be too general for
us, either. Nevertheless, the approach of Powell and Cheung suggests an idea for us to construct
a backwards recursion method for finding the expected recourse functions and, thus, expected
overall performance functions explicitly. As we will see, this method generalizes the approach
presented in the section 4 for Bernoulli demand distributions.

5.2 Backwards recursion method

As always, we assume the customer demands to be independent and identically distributed, and
assume (40) to be their probability mass function. Let us consider here once again the first-
stage decision making in a sequence with n stages, presented by dynamic formulation (21)–(23)
in section 3.4 on page 26:

Zn(ξ1, s) = max
x1

ξ1

+ Qn−1(x1)

x1 ≤ s

x1 ≤ ξ1

x1 ≥ 0

(45)

where the expected recourse function Qn−1(x1) absorbs all consequent stages 2, . . . , n:

Zn−k+1(ξk, s̃) = max
xk

ξk

+ Qn−k(xk)

xk ≤ s̃

xk ≤ ξk

xk ≥ 0

where

Qn−k(xk) = E [Qn−k(xk, ξk+1)]

Qn−k(xk, ξk+1) = Zn−k(ξk+1, s̃ − xk)

with

Q0 ≡ 0

(46)

As we already know,e the expectation of the optimal objective value in (45) delivers the expected
overall performance in the whole sequence provided the initial stock equals s:

E|n|(s) = E [Zn(ξ1, s)]

The same holds for all consequent stages: if the available stock at the beginning of a k-th stage
amounts to s̃, then

E|n − k + 1|(s̃) = E [Zn−k+1(ξk, s̃)]

eSee Proposition 1 on page 27.
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Hence, we can rewrite (46) in the following recursive form:

Zn(ξ1, s) = max
x1

ξ1

+ Qn−1(x1)

x1 ≤ s

x1 ≤ ξ1

x1 ≥ 0

where

Qn−1(x1) = E|n − 1|(s − x1)

and

Q0 ≡ 0

(∀n > 0 ) (47)

Thus, a recursive computation of E|n|(s) can be organized as follows:

1. start with n = 1:

• for each realization of random demand ξ1 express the optimal decision x∗
1 as well as the

optimal objective value Z1(ξ1, s);

• express the expectation E|1|(s);

2. proceed to n = 2:

• for each realization of random demand ξ1 express the optimal decision x∗
1 as well as the

optimal objective value Z2(ξ1, s);

• express its expectation E|2|(s);

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

in general, having obtained E|n − 1|(s) in the previous iteration,

• express the optimal decision x∗
1 as well as the optimal objective value Zn(ξ1, s);

• express the expectation E|n|(s);

Let us implement this computation. We assume at first for the sake of simplicity that all demand
realizations are non-zero:

0 < d1 < . . . < dm.

We start with

Iteration 1 : n = 1

Obviously, for each demand realization ξ1 we make a decision x1 by solving the following problem:

Z1(ξ1, s) = max
x1

ξ1

x1 ≤ s

x1 ≤ ξ1

x1 ≥ 0
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Obviously, the greatest possible value of x1 maximizes the objective function:

x∗
1 = min{ξ1, s}.

For each single demand realization we obtain the following optimal objective values depending on
interrelationship between ξ1 and s:

ξ1 = d1 =⇒ Z1(d1, s) =







1, s > d1
s

d1

, s ≤ d1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ξ1 = dm =⇒ Z1(dm, s) =







1, s > dm
s

dm

, s ≤ dm

Then the expectation of the optimal objective value with respect to the distribution of ξ1 expresses
as:

E|1|(s) = Eξ1 [Z1(ξ1, s)] = p1 · Z1(d1, s) + . . . + pm · Z1(dm, s) =

=































































































































































































m
∑

i=1

s

di

· pi, 0 ≤ s ≤ d1

p1 +
m

∑

i=2

s

di

· pi, d1 < s ≤ d2

p1 + p2 +
m

∑

i=3

s

di

· pi, d2 < s ≤ d3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m−k
∑

i=1

pi +
m

∑

i=m−k+1

s

di

· pi, dm−k < s ≤ dm−k+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m−2
∑

i=1

pi +
s

dm−1

· pm−1 +
s

dm

· pm, dm−2 < s ≤ dm−1

m−1
∑

i=1

pi +
s

dm

· pm, dm−1 < s ≤ dm

m
∑

i=1

pi = 1, dm < s

(48)
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Figure 20 depicts an example of the function E|1|(s) for the uniform discrete distribution on
{1, . . . , 5}.

 1

 1  2  3  4  5

Figure 20: Function E|1|(s) for ξ1 distributed uniformly on {1, . . . , 5}

Remark: We have to stress here that E|1|(s) exemplifies the following properties:

(a) it is piecewise linear;

(b) concave;

(c) nondecreasing;

(d) its rate of increase is by itself nonincreasing: the linear pieces of the function are sloping less
and less as s grows;

(e) it attains its maximal value of n = 1 at some point and stays constant after this rightmost
breakpoint.

These properties of the function (48) can be verified explicitly. Also, piecewise linearity and
concavity can be derived from the general properties of expected recourse functions mentioned on
page 47.

This completes the 1st iteration. Let us now describe the n-th iteration, for any n > 1.

Iteration n : n > 1

We now consider a sequence of n customers. Decision making in its 1st stage is represented by the
problem (47). It is assumed that we have obtained function E|n− 1|(s) on the previous iteration.
Let us use induction in this iteration: we assume E|n− 1|(s) to exemplify the properties (a)–(e)
and write it down as:
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E|n − 1|(s) =























a1s + b1, 0 = c0 ≤ s ≤ c1

a2s + b2, c1 < s ≤ c2

. . . . . . . . . . . . . . . . . . . . . . .
ars + br, cr−1 < s ≤ cr

n − 1, cr < s

(49)

with 0 < ar < . . . < a1.

Property (e) should be reformulated in the following way:

(e) it attains its maximal value of n − 1 at some point and stays constant after this rightmost
breakpoint.

We will show that the same properties also hold for E|n|(s), which we compute in the current
iteration. The 1st iteration proved already E|1|(s) to have these properties.

In order to express E|n|(s), let us determine the optimal decision x∗
1 for each possible realization

of demand ξ1. Obviously, we can rewrite (47) as a problem of maximization of the function of a
single variable on a closed interval:

Zn(ξ1, s) = max
[0,min{ξ1,s}]

x1

ξ1

+ Qn−1(x1) (50)

where

Qn−1(x1) = E|n − 1|(s − x1) =























a1(s − x1) + b1, c0 ≤ s − x1 ≤ c1

a2(s − x1) + b2, c1 < s − x1 ≤ c2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ar(s − x1) + br, cr−1 < s − x1 ≤ cr

n − 1, cr < s − x1

=

=























−a1x1 + a1s + b1, s − c1 ≤ x1 ≤ s − c0

−a2x1 + a2s + b2, s − c2 ≤ x1 < s − c1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−arx1 + ars + br, s − cr ≤ x1 < s − cr−1

n − 1, x1 < s − cr

=























n − 1, x1 < s − cr

−arx1 + ars + br, s − cr ≤ x1 < s − cr−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−a2x1 + a2s + b2, s − c2 ≤ x1 < s − c1

−a1x1 + a1s + b1, s − c1 ≤ x1 ≤ s − c0

(51)

Note that properties (a)–(b) hold for Qn−1(x1) too, while (c)–(e) change to:

(c’) it is nonincreasing;

(d’) its rate of decrease is by itself nondecreasing: the linear pieces of the function become steeper
as x1 grows;

(e’) its maximal value n − 1 stays constant up until reaching the first breakpoint from the left.

Figure 21 shows an example of Qn−1(x1) for n = 2 and some s, based on the example given in
Figure 20.
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ss - 1s - 2s - 3s - 4s - 5

Figure 21: Function Qn−1(x1) for n = 2 and some s ; see also Figure 20

Note that the shape of the graph of Qn−1(x1) doesn’t depend on s. The varying value of s makes
the graph only drift along the horizontal axis. Let us enumerate the intervals of linearity of Qn−1

from the right to the left, so that the 1st interval corresponds to the slope −a1, the 2nd one —
to −a2, and so on. Note that all intervals comprise together the domain (−∞, s] of the function
Qn−1.

Let us now turn to the objective function of (50) and denote it by f(x1):

f(x1) =
x1

ξ1

+ Qn−1(x1).

Obviously, its first term is a linear function, while the second one is a piecewise linear concave
function. Hence, f(x1) is piecewise linear and concave, too. Depending on the value of ξ1 and on
the slopes of Qn−1(x1), f may occur to be either nondecreasing, or increasing up to some point
and then decreasing. The latter case is shown in Figure 22.

It is not hard to determine the value x̂1 that delivers a global maximum to the function f : starting
at its leftmost linear piece, we have to move to the right as long as the slopes of successive pieces
stay positive. Let us keep for f the enumeration of intervals of linearity introduced above for Q.
Then, the slope of the i-th linear piece of f equals

1

ξ1

− ai.

We know that ar < . . . < a1; hence, the right-hand end of the rightmost interval for which holds

1

ξ1

− ai > 0,

maximizes the objective function on its whole domain (−∞, s]. If we denote by i∗ the index of
the corresponding interval then we can write down the following:

i∗ = min

{

i = 1, . . . , r

∣

∣

∣

∣

1

ξ1

− ai > 0

}

=⇒ x̂1 = s − ci∗−1 (52)
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Figure 22: An example of objective function f(x1); see also Figure 21

Note that there always exists such x̂1 since the starting (leftmost) slope of the objective function
is always positive.

For the sake of brevity we would like to simplify slightly the notation just introduced:

we let t = i∗ − 1, then: x̂1 = s − ct. (53)

(index t stands for ”top”).

It is important to notice here that the above search for x̂1 is invariant of s, since the slopes of
f(x1) are invariant of s. Hence, for each s it will always be the same linear piece of a polygon line
with its rightmost point at the top of the graph. Figure 23 demonstrates this by drawing function
f(x1) for several values of parameter s.

Figure 23: Instances of function f(x1) for several values of parameter s
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But, since we are maximizing f(x1) on the interval [0, min {ξ1, s}], the global maximizer x̂1 may
occur to be infeasible. We need to be able to determine a feasible maximizer x∗

1 as well as to express
the corresponding optimal objective value. Doing this, it is necessary to distinguish between the
following three cases, which we sketch in Figure 24.

A

»

B

»

C

Figure 24: Determining a feasible maximizer

Case A: This is the case when the topmost point of the polygon is located behind the vertical
axis, and so the function doesn’t have any positive slope while getting into domain x1 > 0. This
situation arises by sufficiently low values of s and is characterized by the inequality

x̂1 = s − ct ≤ 0.

This forces the optimal solution to take the lowest possible value:

x∗
1 = 0.

Let us express the corresponding optimal objective value in this case:

Zn(ξ1, s) = f(x∗
1) =

0

ξ1

+ Qn−1(0) =

=















ats + bt, s − ct ≤ 0 < s − ct−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
a2s + b2, s − c2 ≤ 0 < s − c1

a1s + b1, s − c1 ≤ 0 ≤ s − c0

=















a1s + b1, c0 ≤ s ≤ c1

a2s + b2, c1 < s ≤ c2

. . . . . . . . . . . . . . . . . . . .
ats + bt, ct−1 < s ≤ ct

(54)

Obviously, the number of cases in (54) is determined by the number of edges in the polygon after
its topmost point. The two lowest polygons in Figure 23 clarify this: depending on how far x̂1

lies behind the vertical axis, x∗
1 = 0 can be found belonging to any of the declining edges, i.e., to

any of the intervals after x̂1 = s− ct. This requires from us to use each time an appropriate linear
piece for evaluation of the objective function at 0.

Case B: In this case, there is a feasible topmost vertex between 0 and min {ξ1, s}, i.e., this case
is characterized by the inequality

0 < x̂1 ≤ ξ1 or 0 < s − ct ≤ ξ1

Hence,
x∗

1 = x̂1 = s − ct
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Also, we know definitely which linear piece to use in order to evaluate f at this optimal point.
Thus we don’t need to branch the optimal objective value, as we did in case A. So we obtain:

Zn(ξ1, s) = f(x∗
1) =

s − ct

ξ1

+ Qn−1(s − ct) =

=
s − ct

ξ1

+ at(s − (s − ct)) + bt =
s

ξ1

−
ct

ξ1

+ atct + bt. (55)

Case C: This is the case when a sufficiently low demand realization ξ1 makes x̂1 infeasible:

ξ1 < x̂1 = s − ct.

This forces the optimal solution to take the greatest possible value:

x∗
1 = ξ1,

since the function is monotone increasing from the left of x̂1.

Let us express the corresponding optimal objective value. Again, as in case A, we have to branch
the expression as many times, as many linear pieces does the polygon contain before its topmost
point, since the cut ξ1 can become realized at each of these edges — depending on the value of s.
This requires from us to use each time an appropriate linear piece for evaluation of the objective
function at x∗

1 = ξ1.

Zn(ξ1, s) = f(x∗
1) =

ξ1

ξ1

+ Qn−1(ξ1) =

= 1 +















n − 1, ξ1 < s − cr

−arξ1 + ars + br, s − cr ≤ ξ1 < s − cr−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−at+1ξ1 + at+1s + bt+1, s − ct+1 ≤ ξ1 < s − ct

=

=















at+1(s − ξ1) + bt+1 + 1, ct + ξ1 < s ≤ ct+1 + ξ1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ar(s − ξ1) + br + 1, cr−1 + ξ1 < s ≤ cr + ξ1

n, cr + ξ1 < s

(56)

Let us now unify the above three cases. As we have seen, they are characterized by the 3 inequal-
ities, which we have rewritten here to the right:











s − ct ≤ 0

0 < s − ct ≤ ξ1

ξ1 < s − ct

=⇒











s ≤ ct

ct < s ≤ ct + ξ1

ct + ξ1 < s

Hence, with the above three cases we compute an optimal decision and the optimal objective
value Zn(ξ1, s) for each possible value of s, under given demand realization ξ1. Moreover, the
expressions (54), (55), (56) of Zn(ξ1, s) can be unified into the single one:

56



Zn(ξ1, s) =



































































a1s + b1, 0 = c0 ≤ s ≤ c1

a2s + b2, c1 < s ≤ c2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ats + bt, ct−1 < s ≤ ct

s

ξ1

−
ct

ξ1

+ atct + bt, ct < s ≤ ct + ξ1

at+1(s − ξ1) + bt+1 + 1, ct + ξ1 < s ≤ ct+1 + ξ1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ar(s − ξ1) + br + 1, cr−1 + ξ1 < s ≤ cr + ξ1

n, cr + ξ1 < s

(57)

Let us show that Zn(ξ1, s) is a function in s that satisfies the properties (a)–(e), which we assumed
to hold for E|n − 1|(s) at the beginning of the iteration:

(a) Piecewise linearity: obvious.

(b) Concavity. First of all, we have to check the continuity. Continuity of Zn(ξ1, s) in three
separate parts (54), (55), (56) follows from continuity of E|n − 1|(s) given by (49); an
explicit verification shows that the function is also continuous at the points ct and ct + ξ1.
Then, its concavity becomes delivered by the properties (c)–(d):

(c) Nondecreasing: the slopes of all linear pieces are nonnegative, since 0 < ar < . . . < a1 and
ξ1 > 0.

(d) Its rate of increase is by itself nonincreasing: the linear pieces of the function are sloping less
and less as s grows. Indeed, the same property of E|n−1|(s) provides us with ar < . . . < a1,
and hence the property holds for s < ct and s > ct + ξ1. Let us show that it holds also
at ct and ct + ξ1, i.e., that the function doesn’t become steeper at any of these two points.
According to (52)–(53), index t is the lowest one that fulfills

1

ξ1

− at+1 > 0,

what means that for the lower index t − 1 can only hold

1

ξ1

− a(t−1)+1 ≤ 0.

Rewriting the above inequalities as

at+1 <
1

ξ1

and
1

ξ1

≤ at,

we conclude that the slopes at the above two breakpoints do not increase, indeed.

(e) it attains its maximal value of n = 1 at some point and stays constant after this rightmost
breakpoint: obvious.

Expressing the recourse functions Zn(ξ1, s) for each realization of ξ1 = d1, . . . , dm, we finally come
to the expected recourse function, which represents the expected overall performance:
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E|n|(s) = E [Zn(ξ1, s)] = p1 · Zn(d1, s) + . . . + pm · Zn(dm, s)

Since we produce a convex combination of the functions satisfying properties (a)–(e), the latter
are kept by E|n|(s), too. This proves the induction and completes the iteration. 2

The above recursion method allows us to compute the expected recursion function for any n
explicitly. Comparing the non-mobile configuration C|n1| . . . |nK | of a distribution system with its
mobile counterpart CM|n1| . . . |nK | in terms of their expected overall performances

E|n1| . . . |nK |(s) = E|n1|(sn1/N) + . . . + E|nK |(snK/N)

and

EM|n1| . . . |nK |(s) = E|N |(s)

we have to compute the functions E|n1|, . . . , E|nK |, E|N |. Running the recursive method through
1, . . . , N , we obtain these functions, and hence, can compare the performance in mobile and non-
mobile environments. The next sections presents some computational experience we have got for
several different configurations of a distribution system.

Remark 1: We presented the method keeping for the sake of simplicity the assumption of non-
zero demands: 0 < d1 < . . . < dm. It is not hard to adjust the method also for the case of having
a zero demand in the probability distribution.

Remark 2: As we can also see, the method doesn’t restrict us to one and the same demand
distribution for all customers, but allows each customer demand to follow its own probability
distribution, which only has to be a finite one. Nevertheless, we restrict us in this paper to the
case of identically distributed demands.

Remark 3: Approximate solutions for the case of continuous demand distributions can also
be obtained with the presented method, since we can approximate continuous distributions by
discrete ones through sampling of the former.

5.3 Computational results

Example 1

Let us consider the non-mobile configuration C|5|5|5|5|5| ≡ C|5|5 of a distribution system with
25 customers, and compare its expected overall performance with that of the mobile configura-
tion CM|5|5. We assume the demand distribution to be dicrete uniform with the state space
{1, 2, . . . , 10}.

Figure 25 presents the expected performance functions and the corresponding advantage of the
mobile solution in per cent. It took the computer with an AMD SempronTM 1.83 GHz processor
less than a second to obtain the E|25|(s) function. The latter turns out to be piecewise linear
consisting of 251 pieces.

As we can see on the advantage graph (to the right), the relative advantage increases for very scarce
resources: we had to truncate the graph for values of s < 20 with performance advantage over
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Figure 25: Expected performances E|5|5(s) and EM|5|5(s), and the relative advantage of mobile
performance (in %)

10%, either, in order to keep an appropriate scaling for the rest of the graph. A peak performance
improvement around average values of s is 4.16% attained at s = 132.

Example 2

The above peak performance improves slightly if we consider a demand distribution with a greater
performance. In case presented in Figure 26 we took 10 equally spaced values between 1 and 100
as equally probable demand realizations.
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Figure 26: Expected performances E|5|5(s) and EM|5|5(s), and the relative advantage of mobile
performance (in %)

The similar peak performance attains in this case the value 4.79%.
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Example 3

The following example shows that the improvement effect vanishes as larger customer groups
become integrated in the mobile solution.

We consider here the non-mobile configuration C|50|50|50|50|50| ≡ C|50|5 of a distribution sys-
tem with 250 customers, and compare its expected overall performance with that of the mobile
configuration CM|50|5. We assume the demand distribution to be the same one as in Example 1
— discrete uniform with the state space {1, 2, . . . , 10}.

Figure 27 presents the expected performance functions and the corresponding advantage of the
mobile solution in per cent. It took the same computer 30 seconds to obtain E|250|(s). The latter
turns out to be piecewise linear consisting of 2501 pieces.
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Figure 27: Expected performances E|50|5(s) and EM|50|5(s), and the relative advantage of mobile
performance (in %)

The similar peak performance attains in this case the value 1.13%.
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A Comparing the expected performance functions

Comparing E|1|1|(s) and EM|1|1|(s)

Proposition 3 ∀p ∈ (0, 1) ∀s ≥ 0 : E|1|1|(s) ≤ EM|1|1|(s).

Proof: We can split the proof into three parts:

(1:) 0 ≤ s ≤ 1:

E|1|1|(s) = 2 − p(2 − s) ≤ 2(1 − p) + ps(2 − p) = EM|1|1|(s)
2 − 2p + ps ≤ 2 − 2p + 2ps − p2s

0 ≤ ps − p2s
0 ≤ ps(1 − p)

(2:) 1 < s ≤ 2:
E|1|1|(s) = 2 − p(2 − s) ≤ 2 − p2(2 − s) = EM|1|1|(s)

−p(2 − s) ≤ −p2(2 − s)
p(2 − s) ≥ p2(2 − s)

(3:) s > 2:
E|1|1|(s) = 2 ≤ 2 = EM|1|1|(s)

2

Comparing E|1|3(s) and EM|1|3(s)

Proposition 4 ∀p ∈ (0, 1) ∀s ≥ 0 : E|1|3(s) ≤ EM|1|3(s).

Proof: We can split the proof into four parts:

(1:) 0 ≤ s ≤ 1:

E|1|3(s) = 3 − p(3 − s) ≤ 3 − 3p + ps(2 − p) + ps(1 − p)2 = EM|1|3(s)
3 − 3p + ps ≤ 3 − 3p + ps(2 − p) + ps(1 − p)2

ps ≤ ps(2 − p) + ps(1 − p)2

s ≤ s(2 − p) + s(1 − p)2

The last inequality holds since 2 − p > 1 and (1 − p)2 > 0.

(2:) 1 < s ≤ 2:

E|1|3(s) = 3 − p(3 − s) ≤ 3 − 3p2(2 − s) − p3(2s − 3) = EM|1|3(s)
−p(3 − s) ≤ −3p2(2 − s) − p3(2s − 3)

3 − s ≥ 3p(2 − s) + p2(2s − 3)
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Clearly, the right-hand side is a strictly increasing function in p. Keeping in mind that
0 < p < 1, let us assign the limiting value 1 to p. Then the right-hand side expresses as:

3 · 1 · (2 − s) + 1 · (2s − 3) = 6 − 3s + 2s − 3 = 3 − s.

Thus, the right-hand side equals the left-hand side under p = 1. It follows that for 0 < p < 1
the following inequality holds:

3 − s > 3p(2 − s) + p2(2s − 3)

(3:) 2 < s ≤ 3:
E|1|3(s) = 3 − p(3 − s) ≤ 3 − p3(3 − s) = EM|1|3(s)

−p(3 − s) ≤ −p3(3 − s)
p(3 − s) ≥ p3(3 − s)

(4:) s > 3:
E|1|3(s) = 3 ≤ 3 = EM|1|3(s)

2
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[36] Prosy GmbH, Wuppertal, Germany. Mobile logistics.
http://www.prosy.de/produkte/mobilogi/allgemein.htm (in German).

[37] H. N. Psaraftis. Dynamic vehicle routing: Status and prospects. Annals of Operations
Research, 61:143–164, 1995.

[38] A. V. Puelz. A stochastic convergence model for portfolio selection. Operations Research,
50(3):462–476, 2002.

[39] D. F. Ross. Distribution: Planning and Control. Chapman & Hall, New York, 1996.
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